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Abstract

Human decision making depends on learning and using
models that capture the statistical structure of the world,
including the long-run expected outcomes of our actions.
One prominent approach to abstracting such long-run
outcomes is the successor representation (SR), which rep-
resents a mapping between current and future states, and
has been implicated in both behavioral and neural data.
Although much behavioral and neural evidence suggest
that people and animals use such a representation, it re-
mains unknown how they learn it. Bootstrapping methods
(SR-TD(0)) have been ubiquitously proposed, but boot-
strapping a vector-valued function in large state spaces
appears biologically implausible. Here we propose an
alternative learning rule, termed SR-Trace, which approx-
imates SR-TD(1) using a simpler scalar update process.
We examined the behavior of both on a probabilistic graph
learning task, and found that trial-by-trial response times
were better predicted by the more plausibly realizable SR-
Trace model, suggesting that humans may rely on this
biologically plausible SR learning rule in graph learning
tasks.

Introduction

A range of neural and behavioral results (Schapiro, Turk-
Browne, Norman, & Botvinick, 2016; Garvert, Dolan, &
Behrens, 2017; Stachenfeld, Botvinick, & Gershman, 2017;
Momennejad et al., 2017; Russek, Momennejad, Botvinick,
Gershman, & Daw, 2021; Ekman, Kusch, & de Lange, 2023)
suggest that the brain uses temporally abstract representa-
tions like the successor representation (SR) (Dayan, 1993),
which predict future events over multiple steps. However, it re-
mains unknown how these long-range predictions are learned.
One setting in which it may be promising to investigate such
learning rules is stimulus-by-stimulus reaction times (RTs) in
graph learning tasks, which reflect predictions relatively di-
rectly. In particular, previous work has shown that in such
tasks, people exhibit systematic RT biases, among which is a
sensitivity to modular structure, exhibited via a ‘cross-cluster
surprisal effect’, where RTs are heightened when transitioning
between densely-interconnected clusters of nodes (Karuza,
Kahn, Thompson-Schill, & Bassett, 2017; Kahn, Karuza, Vettel,
& Bassett, 2018). These behavioral biases are well captured
by a maximum-entropy prediction model that balances rep-
resentational complexity with accuracy (Lynn, Kahn, Nyema,
& Bassett, 2020) and which is mathematically equivalent to
the SR. The SR’s predictions are higher within than between
clusters, because multi-step transitions tend to respect clus-
ter boundaries. These results suggest that peoples’ learned
representations of graph structure reflect an SR.

While we can observe correlates of the expected SR for
block-averaged behavior, there are a number of distinct hy-
pothesized mechanisms for how the SR might be learned in
a trial-by-trial fashion (Russek, Momennejad, Botvinick, Ger-
shman, & Daw, 2017). The SR can be directly computed
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Figure 1: SR Prediction on a Graph Learning Task. a) Task
Design: Participants responded to a sequence of 1500 stimuli
derived from a random walk on a modular graph, where each
trial required pressing a one- or two-button combination of keys
to identify the presented stimulus as quickly as possible. b) SR
Updating: SR-TD requires transmitting a 1 x n error vector to
update future predictions of all states whose trace is nonzero.
SR-Trace instead only requires local updates, while having the
same fixed point.

from the one-step transition matrix 7' (which can itself be
learned straightforwardly by a Hebbian update) via its definition
M = (I—YT)~!, but this requires a matrix inversion upon each
update to T. It has instead been widely assumed that the
SR is directly learned via a bootstrapped temporal-difference
rule, SR-TD(0), where future occupancy is directly learned via
temporal-difference learning (Dayan, 1993; Gershman, Moore,
Todd, Norman, & Sederberg, 2012; Gardner, Schoenbaum,
& Gershman, 2018). However, such a rule requires a vector
valued update signal (a separate prediction error for each tar-
get state, i.e., each row of M), which appears anatomically
implausible (Akam & Walton, 2021) (Figure 1b, left). Here we
propose an alternative, SR-Trace, which can be learned using
a Hebbian update with eligibility traces, without a vector-valued
error signal (Figure 1b, right).



SR-Trace

SR-Trace is a Monte Carlo estimator for the SR, derived from
SR-TD(A) for A = 1. Recall that TD(A) interpolates between
fully bootstrapped TD (A = 0) (where a “bootstrapped” future
prediction stands in for longer run outcomes at each update)
and a Monte Carlo estimator A = 1 (where long-run outcomes
are incorporated directly by gating updates with a long-lasting
“eligibility trace” e at each state). When A = 1, the bootstrap
terms have only transient effect as the bootstrap from each suc-
cessive update replaces the previous one at each state (except
when that state is encountered and its eligibility increases).
Thus by replacing the bootstrap term in the prediction error
with 0 and simplifying, we obtain a variant rule in which the
SR is estimated via Hebbian learning with decay and eligibility
traces (Figure 1b, right), without requiring a vector-valued error
signal to route a 1 x n vector of state-specific bootstraps. Con-
ceptually, this approximation can be thought of as a truncation
of the target sample at each step by deferring the rest of the
long-run update, which will in turn gradually be incorporated
by outcomes encountered at later steps, so that the fixed point
(the SR) is the same in the limit.
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Figure 2: Model fit and parameter recovery. a) Model com-
parison between SR-Trace and alternatives. Bars indicate the
integrated AIC, where more negative values indicate a better fit
to observed data. b) Model comparison between full SR-Trace
and simplified versions. U and L, respectively, indicate whether
the model was initialized with an uninformed starting point (vs.
the expected fix point SR) and whether learning was included.
c) Distribution of recovered subject-level parameters for SR-
trace. Bamid,,a,,»o,, is the coefficient of anticipation, indicating
the effect of anticipation on reaction time. oM is the learning
rate for the SR M matrix. yis the discount factor. d) Distribution
of recovered subject-level parameters for SR-TD(0).

Model

We modeled the RT data from Kahn et al. (2018), where partic-
ipants completed 1500 trials of a serial reaction time-like task,
responding to a cue shown on the screen as rapidly as possible
with a one- or two-button key combination. Unbeknownst to par-
ticipants, the sequence of cues followed a traversal through a
graph composed of 15 nodes in 3 clusters. RTs were assumed
to be log-normally distributed, including a possible shift in base-
line RT. The model took the form: log(rt; —s) ~ N(u;,6?),
where g is a function of a per-subject baseline, trial, target
(finger combination), and an anticipatory effect, which we hy-
pothesize is best explained by the SR. Per-subject parameters
were fit hierarchically over the group via expectation maximiza-
tion, and models were compared via integrated AIC. For SR
models, the anticipatory effect was the entry of the M matrix
corresponding to the observed transition, denoted M, | s, .

Results

First, we compared SR-Trace with a standard SR-TD(0) boot-
strapped learning rule. In both cases, in order to capture
unbiased baseline expectancy, the M matrix was initialized to
(I—yT)~" for a uniform transition matrix between all 15 stimuli.
After each transition, the SR M matrix was updated using either
TD(0) or the simpler trace update, and the resulting M matrix
was used to estimate the anticipatory effect for each subject.
We find that SR-Trace provides a better fit than SR-TD(0) to
trial-by-trial behavioral data. Additionally, as a baseline, we
compared SR-Trace and SR-TD(0) to two methods that do not
rely on multi-step predictive representations—first, a simple
model which modeled expectancy only by a binary indicator
for between-cluster transitions, and second, a model that di-
rectly learned one-step transition probabilities via a delta rule.
Consistent with prior work, the multi-step predictive models
provided a better fit than either of the alternative models.

Next, we wanted to verify or disprove a number of alternative
explanations for the success of the TD-Trace method. One
possibility is that the effect is an artifact of initialization, e.g.
that the models differ only in initial acquisition of M but not in
steady-state adjustments around the fixed point. To address
this possibility, we initialized M to the steady-state expected
from the full sequence of 1500 stimuli (i.e., (I —y7T)~!), and
compared performance with and without additional learning.
We observe that even when initialized to a ‘converged’ M ma-
trix, trial-by-trial learning is highly predictive of RTs. In addition
to the model fit capturing trial-by-trial fluctuations in anticipa-
tion, we indeed find that initialization to an uninformed baseline
provides a better fit than starting with the converged matrix,
showing that our model provides an optimal fit both when ini-
tialized from a subject’s true belief state (uniform transitions)
and allows for trial-by-trial learning. Together, these results
establish that a biologically plausible implementation of SR
learning may underlie predictive representations and give rise
to RTs observed in graph learning experiments.
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