
Confirmation Bias Is Generalizable Across Pain,
Negative Emotion, and Cognitive Effort

Aryan Yazdanpanah (aryan.yazdanpanah.gr@dartmouth.edu)
Heejung Jung (heejung.jung.gr@dartmouth.edu)
Alireza Soltani (alireza.soltani@dartmouth.edu)

Tor D. Wager (tor.d.wager@dartmouth.edu)
Psychological and Brain Sciences, Dartmouth College, 3 Maynard Street

Hanover, NH 03755 USA

Abstract
Expectations have strong influences on perception, cog-
nition, and behavior. With subsequent learning that re-
lies on prediction errors, one can flexibly update the as-
sociation between expectation and experience, leading
to a fine-tuned representation of the experience. How-
ever, this update could resist change, due to “confirma-
tion bias”, i.e., when learning is strengthened by evidence
that supports expectations and attenuated by evidence
that contradicts them. Despite prior research on con-
firmation bias, their shared underlying mechanisms are
unclear due to studies focusing on a single domain. To
overcome this, we performed a large study on the effects
of expectation on somatic pain, vicarious pain, and cog-
nitive effort within the same participants. Using a com-
bination of model-free and model-based approaches, we
found evidence for domain-general expectancy effects.
Moreover, the confirmation bias within individuals was
correlated between somatic pain and cognitive effort and
between vicarious pain and cognitive effort. Overall, our
results provide evidence for some consistency of con-
firmation bias and shared mechanisms across cognitive
and affective domains.
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Introduction
Expectations effects are potent enough to change one’s sub-
jective experience and is a robust phenomenon across clin-
ical (Bingel et al., 2011; Benedetti et al., 2003) and cogni-
tive domains (Parong, Seitz, Jaeggi, & Green, 2022; Oken
et al., 2007). In turn, the experience generates feedback
that dynamically changes the expectations (Roy et al., 2014),
ideally resulting in fine-tuned representations of the expecta-
tions. However, this is not always the case. Learning from
evidence that is congruent with expectations is stronger com-
pared to learning from evidence that is incongruent with ex-
pectations, leading to resistance to change in the beliefs and
the existence of confirmation bias (Doll, Hutchison, & Frank,
2011; Jepma, Koban, van Doorn, Jones, & Wager, 2018;
Palminteri, Lefebvre, Kilford, & Blakemore, 2017). Despite re-
cent evidence for confirmation bias in single domains, it is still
unknown whether these phenomena rely on similar mecha-
nisms. Using a large-scale experiment with three tasks, con-
ducted within the same participants, here, we explored the

question of domain-generality and domain-specificity of confir-
mation bias across somatic pain, vicarious pain, and cognitive
effort experiments.

Method

Participants and experimental design. 101 participants
partook in the study spanning three domains: somatic pain
(“Pain”), vicarious pain (“Vicarious”), and cognitive effort
(“Cognitive”). Each task consisted of 2 cues (high/low) × 3
stimulus intensity levels (low/medium/high) factorial designs,
to examine the influence of expectation on sensory percep-
tion. Each trial consists of four epochs: cue, expectation rat-
ing, stimulus, outcome rating (Fig. 1). Initially, participants
were shown cues categorized as high or low, with ratings from
prior participants depicted as scattered data points (“cue”;
Cue). Then, participants reported their expectations for the
upcoming experience (“expectation ratings”; E), followed by
the stimulus (“Stimulus”; S), and lastly, reported their subjec-
tive experience (“Outcome”; O). We included participants with
at least 24 trials; the intersection across three domains re-
sulted in N=88 for the experiment.

Figure 1: Experimental design. Schematic of one trial, iden-
tical across three domains of somatic pain, vicarious pain, and
a cognitive effort task.

Computational model. The computational model includes
three key components: (1) outcome rating, (2) expectation rat-
ing, and (3) confirmation bias.
(1) Outcome rating (Pain, Vicarious, Cognitive). In each trial
t, the perceived outcome (O) is calculated as the current stim-
ulus combined with the cue-dependent expectation in the cur-
rent trial ECuei(t) (Eq. 1)

O(t) = (1−w)×S(t)+w×ECuei(t) (1)



In the model, w is the relative weight of cue-dependent expec-
tation (E) to stimulus intensity (S), and is an adjustable free
parameter. Stimulus intensity for each trial is calculated as
the average of subjective outcome ratings across different lev-
els of stimulus intensity.
(2) Expectation updates. The update for each cue is per-
formed using the delta rule of the standard RL model (Eq. 2).

ECuei(t +1) = ECuei(t)+α×PE(t) (2)

The teaching signal is the outcome rating (Eq. 3).

PE(t) =O(t)−ECuei(t) (3)

(3) Confirmation bias in expectation updating. In the pres-
ence of confirmation bias updating expectation, learning con-
gruent information should be stronger than learning about in-
congruent ones, i.e. αc > αi (Jepma, Koban, van Doorn, et
al., 2018; Palminteri et al., 2017). This is implemented as
Equation 4 (Fig. 2):

α =

⎧
⎪⎪
⎨
⎪⎪
⎩

αc if “PE > 0 & Cue = high” OR “PE < 0 & Cue = low”

αi if “PE < 0 & Cue = high” OR “PE > 0 & Cue = low”
(4)

For comparison, we fitted models with and without confir-
mation bias, and a model excluding the learning process. The
model with confirmation bias showed a better fit compared to
the others based on both AIC and Bayesian Model Selection
(BMS) methods.

Figure 2: Confirmation bias model. The expectation update
mechanism with confirmation bias in learning.

Results and Discussion
The effect of stimulus and cue on outcome ratings
Cue and stimulus intensity effects were statistically signifi-
cant, across three domains. First, outcome ratings were,
on average higher, with increasing levels of stimulus inten-
sity (Wilcoxon two-sided signed rank test, Pain: Z = 8.45, p
<.001; Vicarious: Z = 8.63, p <.001; Cognitive: Z = 7.85,

p <.001.) Next, more importantly, the outcome ratings were
significantly higher for high versus low cues across all three
domains (Pain: Z = 7.31, p <.001; Vicarious: Z = 8.19, p
<.001; Cognitive: Z = 8.07, p <.001; Fig. 3a-c).

Figure 3: Cue, stimulus, and confirmation bias effect
across three domains. a-c. Effects of cue and stimulus in-
tensity on outcome rating. d-f. Behavioral learning rates in
high/low appetitive/aversive trials.

Consistency of the cue and stimulus effects across
different domains

Overall, the cue effects were highly consistent between differ-
ent experiments, (Spearman rank correlation, Pain & Vicar-
ious: r =.54, p <.001; Pain & Cognitive r =.29, p =.0050;
Vicarious & Cognitive: r =.43, p <.001).

Confirmation bias in expectation learning in
different domains

In both computational models and behavioral effects, confir-
mation bias was observed across all tasks; learning rates
were greater when signed PE aligned with the cue direction,
i.e. appetitive PE (PE <0) & low cue trials or aversive PE (PE
> 0) & high cue trials (repeated measures ANOVA, Pain: F =
84.69, p <.001; Vicarious: F = 201.80, p <.001; Cognitive: F
= 142.53, p <.001; Fig. 3d-f).

Consistency of the confirmation bias in expectation
learning in different domains

Finally, we investigated whether the confirmation bias origi-
nates from the same behavioral mechanisms or not. The con-
firmation bias in learning was consistent between the Pain &
Cognitive (Spearman rank correlation, r = .28, p <.001), and
Vicarious & Cognitive (r = .29, p <.001), but not between Pain
& Vicarious (r =.15, p =.15).



Conclusion

Overall, we found evidence for the consistent effects of ex-
pectation on learning across cognitive and affective domains,
pointing to the existence of shared underlying mechanisms.
Furthermore, we observed confirmation bias across various
domains, displaying some consistent effects, though not uni-
formly across all domains. These results lay the founda-
tion for further exploration of the neural correlates and sub-
strates of confirmation bias toenrich our understanding of self-
reinforcing expectancy effects.

Acknowledgments

This study was funded by the National Institute of Biomedical
Imaging and Bioengineering (NIBIB; RO1EB026549) and Na-
tional Institute of Mental Health (NIMH; R01MH076136), and
conducted using the facilities at the Dartmouth Brain Imaging
Center (DBIC).

References

Benedetti, F., Pollo, A., Lopiano, L., Lanotte, M., Vighetti,
S., & Rainero, I. (2003). Conscious expecta-
tion and unconscious conditioning in analgesic, mo-
tor, and hormonal placebo/nocebo responses. The
Journal of Neuroscience, 23(10), 4315–4323. doi:
https://doi.org/10.1523/jneurosci.23-10-04315.2003

Bingel, U., Wanigasekera, V., Wiech, K., Ni Mhuirc-
heartaigh, R., Lee, M. C., Ploner, M., & Tracey, I.
(2011). The effect of treatment expectation on drug
efficacy: Imaging the analgesic benefit of the opioid
remifentanil. Science Translational Medicine, 3(70). doi:
https://doi.org/10.1126/scitranslmed.3001244

Doll, B. B., Hutchison, K. E., & Frank, M. J. (2011). Dopamin-
ergic genes predict individual differences in susceptibility to
confirmation bias. The Journal of Neuroscience, 31(16),
6188–6198. doi: 10.1523/jneurosci.6486-10.2011

Jepma, M., Koban, L., van Doorn, J., Jones, M., & Wager,
T. D. (2018). Behavioural and neural evidence for self-
reinforcing expectancy effects on pain. Nature Human Be-
haviour , 2(11), 838–855. doi: 10.1038/s41562-018-0455-
8

Jepma, M., Koban, v. D. J., L., & Wager, T. D. (2018).
Behavioural and neural evidence for self-reinforcing ex-
pectancy effects on pain. Nature Human Behavior , 2(11),
838–855.

Oken, B. S., Flegal, K., Zajdel, D., Kishiyama, S., Haas, M., &
Peters, D. (2007). Expectancy effect: Impact of pill admin-
istration on cognitive performance in healthy seniors. Jour-
nal of Clinical and Experimental Neuropsychology , 30(1),
7–17. doi: https://doi.org/10.1080/13803390701775428

Palminteri, S., Lefebvre, G., Kilford, E. J., & Blakemore, S.-
J. (2017). Confirmation bias in human reinforcement
learning: Evidence from counterfactual feedback process-
ing. PLOS Computational Biology , 13(8), e1005684. doi:
10.1371/journal.pcbi.1005684

Parong, J., Seitz, A. R., Jaeggi, S. M., & Green, C. S. (2022).
Expectation effects in working memory training. Proceed-
ings of the National Academy of Sciences, 119(37). doi:
10.1073/pnas.2209308119

Roy, M., Shohamy, D., Daw, N., Jepma, M., Wimmer, G. E.,
& Wager, T. D. (2014). Representation of aversive predic-
tion errors in the human periaqueductal gray. Nature Neu-
roscience, 17 (11), 1607–1612. doi: 10.1038/nn.3832


