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Abstract: 
Humans are particularly good at planning ‘zero-shot’ (i.e. 
without prior experience of the environment), a skill that 
is especially apparent in spatial domains (e.g., navigating 
a new city). Zero-shot spatial planning likely depends on 
both ‘transition-based’ strategies that focus on 
connectivity between states and ‘vector-based’ 
strategies that focus on their relative spatial locations. 
We developed a novel behavioral paradigm to dissociate 
the use of the two strategies and show that  human 
participants successfully arbitrate between them for 
zero-shot planning by using vector-based strategies to 
head in the general goal direction and transition-based 
strategies to fine-tune navigation near landmarks. Deep 
reinforcement learning models trained on the same task 
learn behavioral policies that are strikingly similar to that 
of humans. Analysis of the models’ learnt 
representations reveal the emergence of functional 
‘modules’ that implement these strategies, each with 
distinct informational content, representational 
geometries, and activation patterns. 
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Introduction 
Zero-shot planning likely depends on our ability to 
exploit both environment-specific state-transition 
structures and generalizable abstract structures. This 
roughly maps onto two classes of models of spatial 
navigation: the former is reminiscent of transition-
based strategies, such as successor representation or 
tree search, that learn from experienced state 
transitions (de Cothi et al., 2022), while the latter is 
reminiscent of vector-based strategies that focus on 
the relative spatial locations of states in the 
environment (Banino et al., 2018). Both strategies are 
likely necessary for zero-shot planning, yet it is unclear 
how humans arbitrate between them. Here, we ask 
whether and how zero-shot planning depends on 
combining these two strategies. We hypothesize that 
humans rely predominantly on vector-based strategies 
to head in the general goal direction, and transition-
based strategies to fine-tune navigation in areas where 
the transition structure is more familiar (e.g., near 
landmarks; Lan et al., 2023). We then ask whether 
human behavior resembles that of deep reinforcement 
learning (RL) models meta-trained for zero-shot spatial 
planning, and probe the models’ representations to ask 
how these strategies might be differently implemented. 
 

Method 
We developed a behavioural paradigm designed to 
dissociate vector-based and transition-based 
strategies. Participants navigated through an 8x8 grid 
full of ‘objects’. In the learning phase of each trial, 
participants saw a top-down view of the grid (Fig. 1A). 
They clicked on a sequence of squares, highlighted 
blue, successively revealing the ‘landmark’ objects that 

were at the corresponding locations. Participants learnt 
the locations of only a subset (2 to 16) of all objects. 
After clicking on the blue squares, participants clicked 
on a yellow square to reveal the ‘goal’ object location 
for the upcoming trial. Every trial involved a completely 
new grid of new objects, hence requiring participants 
to plan ‘zero-shot’ without prior navigational 
experience and based solely on the knowledge of a few 
landmarks. In the test phase, participants started in a 
random, previously unlearnt location and were required 
to navigate to the ‘goal’ object (Fig. 1B). The object 
associated with the current state was always displayed 
singly and centrally. On every step, participants could 
navigate the grid in one of two ways. They could click 
on arrows located on one side of the screen, which 
took them one step in the corresponding direction 
(‘vector-based’ strategy). Alternatively, they could click 
one of the adjacent objects (displayed in random 
order), which moved them to the state corresponding 
to that object (‘transition-based’ strategy). Crucially, 
both response methods allowed participants to move 
to the same adjacent states, but their choice revealed 
whether they were focusing on goal direction or state 
transitions. Every step cost 50 points and reaching the 
goal earned participants 1000 points. 

Figure 1: Task schematic for the learning (A) and test 
phases (B) of each trial 

 
200 participants participated in Experiment 1 and 100 
participants participated in Experiment 2, which was a 
pre-registered replication of results from Experiment 1. 
In Experiment 1, we manipulated across blocks which 
response strategies were available. There were four 
conditions: one where both strategies were always 
available (‘Both’), where only one or the other strategy 
was available (‘Vectors Only’ or ‘Transitions Only’), and 
where the type of strategy available randomly 
alternated on each step (‘Random Alternation’). Half of 
the participants navigated in an open-field environment 
and half navigated in a cluttered environment with 
intervening obstacles. Moreover, we trained deep RL 
agents on all conditions in Experiment 1 with Proximal 
Policy Optimisation (PPO). The agent consisted of a 
shared LSTM with 100 units and separate policy and 
value heads (MLPs with 2 layers of 64 units each). We 
trained 10 models, each initialised with a different seed. 
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Figure 2: A/B: Human and model performance by condition. C/D: Human and model use of vectors by type of 
destination and whether the new state had been visited before. E: R2 value for each unit’s cell-state activity 
predicting the output for the ‘vector’ or ‘transition’ actions. F: Model performance after lesions. G/H: 
Representational geometry of ‘vector’/‘transition’ units. I/J: Response patterns of ‘vector’/‘transition’ units. 

Results 
Human and Model Behaviour. Both participants and 
deep RL models performed best in the ‘Both’ 
condition, suggesting that zero-shot planning depends 
on freely arbitrating between vector- and transition-
based strategies (Fig. 2A/B). Compared to the ‘Both’ 
condition, both humans and models took more steps 
to get to the goal in the ‘Vectors Only’, (linear mixed 
effects model; humans: t(278) = 3.47, p < .001, models: 
t(22) = 14.26, p < .001), ‘Transitions Only’, (humans: 
t(207) = 19.08, p < .001; models: t(17) = 76.09, p < .001) 
and ‘Random Alternation’ conditions (humans: t(194) = 
9.27, p < .001; models: t(36) = 23.54, p < .001).  

When agents could freely choose between 
strategies, they relied predominantly on ‘vector’ 
responses, but used ‘transition’ responses to fine-tune 
their navigation adjacent to goals (mixed effects 
logistic regression; humans: z = 20.30, p < .001, 
models: z = 34.87, p < .001) and landmarks (humans: z 
= 14.67, p < .001, models: z = 29.75, p < .001; Fig. 
2C/D). While agents knew only a few landmarks, they 
could also learn about the environment’s transition 
structure during navigation itself: indeed, both humans 
and deep RL agents use ‘transition-based’ responses 
more at states that had been previously encountered 
during navigation (humans: z = 4.90, p < .001, models: 
z = 11.09, p < .001). These human behavioural effects 
replicated in pre-registered Experiment 2, where 
participants only experienced the ‘Both’ condition in a 
cluttered environment. 
 
Model Representations. The results reported here 
represent those from the best-performing model, but 
findings replicate across models. We identified the 

LSTM units responsible for implementing ‘vector’ vs 
‘transition-based’ strategies by taking the 10 units 
whose cell state responses correlated most strongly 
with the output logits of either the ‘vector’ or the 
‘transition’ actions in the policy network (Fig. 2E). 
Lesioning these units led to a double dissociation in 
performance on the ‘Vectors Only’ and ‘Transitions 
Only’ conditions (Fig. 2F). Decoding analyses 
suggested that these units encoded different task 
variables: on held-out trials, ‘vector’ units had lower 
decoding error for spatial variables like x/y-coordinates 
(t(150998) = -14.63, p < .001), while ‘transition’ units 
had lower decoding error on landmark adjacency (z = 
56.10, p < .001). PCA on cell state responses revealed 
that the representational geometry of ‘vector’ units 
respected spatial structure, especially after a landmark 
had been encountered (Fig. 2G), while ‘transition’ units 
represented landmarks and non-landmarks differently 
without spatial structure (Fig. 2H). Lastly, we looked at 
the activation patterns of the units during navigation. 
‘Vector’ units responded strongly near borders of the 
grid across environments, reminiscent of ‘boundary’ 
cells in the entorhinal cortex (Solstad et al., 2008; Fig. 
2I). ‘Transition’ units remapped their peak responses to 
locations of landmarks and goals, reminiscent of 
hippocampal firing fields shifting to landmark and goal 
locations (Gauthier & Tank, 2018; Gothard et al., 1996; 
Muhle-Karbe et al., 2023; Fig. 2J).  

 
Summary. Overall, our results suggest that humans 
successfully combine vector- and transition-based 
strategies for zero-shot planning. Analysis of deep RL 
models’ learnt representations reveal different 
computational implementations of each strategy, 
making predictions for future neural experiments. 
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