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Abstract
In cognitive neuroscience, we routinely study the neu-
ral substrates of social cognition and physical cognition
by directly contrasting neural responses in social and
physical tasks. Yet, this approach can occlude com-
putations that are shared across domains. Using an
open fMRI dataset, we test the hypothesis that two corti-
cal regions previously shown to be preferentially engaged
for social and physical perception – the superior tem-
poral sulcus (STS) and the supramarginal gyrus (SMG)
– nonetheless contain representations relevant for both
domains. Participants were scanned as they watched
and made predictions about two dots interacting like so-
cial agents or inanimate objects. In exploratory func-
tional region-of-interest analyses, we found that multi-
variate patterns in STS and SMG contained information
about whether the scene included a physical barrier, de-
spite showing strong and opposite preferences for social
and physical videos. These findings suggest that cortical
regions specialized for social and physical functions may
share representational content.
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Every day, we navigate a physical and social world, filled
with objects, obstacles, bodies, and minds. Distinct cortical
regions in the human brain support processing physical and
social information. Regions in the premotor and parietal cor-
tex are responsive during physical prediction and inference
and contain representations of mass and stability (Pramod
et al., 2022, Schwettmann, Tenenbaum, & Kanwisher, 2019,
Fischer et al., 2016). Regions in the Theory of Mind (ToM)
network, including superior temporal sulcus and temporopari-
etal junction, are preferentially engaged during social rea-
soning, and contain representations about social interactions
(Dodell-Feder et al., 2011, Isik, Koldewyn, Beeler, & Kan-
wisher, 2017). These two systems have been hypothesized
to serve distinct functions (Mitchell, Heatherton, & Macrae,
2002) and to compete with each other (Jack et al., 2013). Yet,
the social and physical worlds are not independent (Liu, Outa,
& Akbiyik, 2024); people’s mental states, actions, and inter-
actions depend on their current physical states, their desired
goal states, and what obstacles stand in their way (Baker et
al., 2017, Jara-Ettinger et al., 2016, Gergely & Csibra, 2003).
So how do our minds and brains combine these two do-
mains of information? If physics regions and ToM regions are
functionally segregated (Jack et al., 2013), then they should

only be sensitive to physical and social features, respectively,
which are then combined downstream. In contrast, we hypoth-
esize that these regions work together, in part by representing
shared information (e.g., physical information relevant for in-
terpreting social and physical interactions).

Methods
To test these alternative hypotheses, we studied neural re-
sponses to simplified social and physical interaction events
in a publicly available dataset. Analyses were conducted in
four regions-of-interest (ROIs): left and right supramarginal
gyrus (SMG), which are implicated in physical reasoning, and
left and right superior temporal sulcus (STS), which are im-
plicated in ToM. Do STS and SMG only represent social and
physical information, respectively? Or are these regions also
sensitive to information from the ”opposite” domain? Here, we
test whether the STS and SMG are sensitive to features that
should be relevant for both domains: physical obstacles, and
physical collisions.

Dataset, task, and stimulus features
We analyzed an open fMRI dataset, including data from 45
participants (Liu, Lydic, et al., 2024). Here we present ex-
ploratory analyses in one subset of the data (N = 16 18- to
45-yo adults). In the scanner, participants saw two runs, each
containing 32 8s videos of interactions between two 2D circles
(Fig. 1B; (Fischer et al., 2016). In the physical interaction con-
dition, the circles moved like solid objects (e.g., bouncing off
the walls and each other); in the social interaction condition,
the circles moved like social agents (e.g., chasing and imitat-
ing each other). Half of the videos in each condition included a
physical barrier. Participants predicted the trajectory of one of
the dots after it disappeared, and reported whether its reap-
pearance at the end of the trial was plausible or implausible
by button press. Each video was characterized in terms of the
following three features: (1) domain (physical vs. social inter-
action); (2) physical constraint (present vs. absent); and (3)
total number of collisions (always 0 for social videos, range 7
to 44 for physical videos).

Overview of analyses
We used fMRIPrep (Esteban et al., 2019) to pre-process the
data (see here for a full description), and a custom pipeline
written using nipype (Gorgolewski et al., 2011) to extract run-
level responses for all videos for all subjects. Scripts and fROI
data required to reproduce the results are openly available on
OSF.

https://openneuro.org/datasets/ds004934
https://openneuro.org/datasets/ds004934
https://osf.io/ed29b?view_only=7e300a7afb244f0088f60dc723a50f5d
https://osf.io/dv97h/?view_only=7e300a7afb244f0088f60dc723a50f5d


fROI identification. We used data and parcels from an in-
dependent task involving video stimuli of agents and objects
(Liu, Lydic, et al., 2024) to functionally identify ROIs (fROIs)
in each participant (Fig. 1A). LSMG and RSMG were identi-
fied using the contrast: objects > agents; LSTS and RSTS
were identified using the opposite contrast. The top 100 vox-
els within each parcel were selected for further analysis.

Univariate analyses. For each fROI, we measured the av-
erage response to each video stimulus. We then used linear
mixed effects models in R (“lme4”; Bates, 2010) to model the
average response as a function of domain (physical vs. social
interaction), constraint (present vs. absent), and collisions.
Models included by-subject and by-video random intercepts.
The resulting coefficients represent how much each feature
drives the amplitude of response in an fROI, controlling for
the other two features. The ”afex” package (Singmann et al.,
2015) was used to get p values for fixed effects.

Representational similarity analyses. For each of the
three features, we computed a representational dissimilar-
ity matrix (RDM) of feature distances across pairs of stimuli
(Fig. 1D). The domain and constraint RDMs included 0s and
1s (same domain vs. not; both have/lack a barrier vs. not),
and the collision RDM consisted of absolute differences in
collisions. Next, for each fROI in each participant, we com-
puted an RDM that represents neural pattern distances (1 -
Pearson’s r) across the same pairs of stimuli. Then, for each
feature, we computed the partial Spearman’s ρ between the
feature RDM and the neural RDM, controlling for the other two
feature RDMs. We used permutation tests for significance
testing (Stelzer, Chen, & Turner, 2013): We generated the
null distribution of the t statistic by repeating the same partial
correlation analysis over RDMs with scrambled labels (104 it-
erations). The p value was the proportion of null t values that
were greater than the empirical t value.

Results
First, we replicated the finding that STS responds pref-
erentially to social interactions (LSTS: p = 0.001; RSTS:
p <.0001), and SMG responds preferentially to physical in-
teractions (LSMG: p = 0.035; RSMG did not show a domain
preference, p = 0.478 1). Second, none of these regions pref-
erentially responded to events with or without a barrier (p >
0.109), or parametrically increased their activity with the num-
ber of collisions (p > 0.308). Third, multivariate patterns in
these regions encoded the domain of the stimulus (LSMG: ρ

= 0.023, p < 0.0001; RSMG: ρ = 0.045, p = 0.004; LSTS:
ρ = 0.062, p < 0.0001; RSTS: ρ = 0.047, p < 0.0001), and
the presence of a physical obstacle in that stimulus (LSMG:
ρ = 0.013, p = 0.006; RSMG: ρ = 0.022, p = 0.0001; LSTS:
ρ = 0.016, p = 0.001; RSTS: ρ= 0.017, p = 0.006). No fROI
contained multivariate information about the number of colli-

1The null univariate result in RSMG appears to hinge on our ROI
definition: When separate runs of our focal task are used to choose
fROIs, RSMG responds preferentially to physical interactions (p =
0.0049).
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Figure 1: fROI selection, stimulus features, and multivariate
results. (A-B) An independent task was used to identify SMG
and STS; 3 features were tested via RSA. (C) All regions con-
tained information about domain and physical constraints. (D)
RDMs represent feature distances between pairs of videos. p
* < .05; **< .01; *** < .001.See OSF for full-sized figure.

sions. See Fig. 1C. All RSA results still obtain when the other
features are not partialled out.

Discussion

Distinct cortical regions in human brains are engaged when
we see and think about the social and physical world. But if
our understanding of the social world depends on information
about the physical world (Liu, Outa, & Akbiyik, 2024), then
it is plausible that these regions share functions. For exam-
ple, sensitivity to obstacles to agents’ actions and object mo-
tion is one of the most early-emerging cognitive abilities in
human infants (Gergely & Csibra, 2003; Spelke, Breinlinger,
Macomber, & Jacobson, 1992), and is thus likely fundamental
to adults’ social and physical cognition. Here, we found that
regions classically associated with social and physical func-
tions, the STS and SMG, contain both univariate and multi-
variate information about domain (social vs. physical interac-
tion). Yet, both regions also contained representations about
the presence vs. absence of a physical constraint, despite a
univariate preference for social information in STS. Our results
are consistent with work showing that frontoparietal and su-
perior temporal regions represent the physics of both actions
and object events (Karakose-Akbiyik, Caramazza, & Wurm,
2023). So far, our work does not address how early visual
information contributes to these representations. It is also un-
clear whether they originate in STS, SMG, or elsewhere, and
what causal role they play. Nevertheless, the current results
raise the possibility that ToM regions represent not only social

https://osf.io/dv97h/?view_only=7e300a7afb244f0088f60dc723a50f5d


information, but also physical information relevant for social
cognition.
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