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Abstract
Working memory (WM) is a central cognitive ability cru-
cial for intelligent decision-making. Recent experimen-
tal and computational work studying WM has primar-
ily been carried out using categorical stimuli (Panichello
& Buschman, 2021; Yang et al., 2019), rather than
ecologically-valid, multidimensional naturalistic inputs.
Moreover, such studies have primarily evaluated WM on
single or limited numbers of tasks. As a result, there is a
lack of understanding in how naturalistic object informa-
tion is processed by neural circuits. To bridge this gap,
we developed sensory-cognitive models, consisting of a
convolutional neural network (CNN) coupled with a recur-
rent neural network (RNN), and trained them on nine dis-
tinct N-back tasks using naturalistic stimuli. By examin-
ing the RNN’s latent space, we found that: 1) multi-task
RNNs simultaneously represent both task-relevant and ir-
relevant information while performing tasks; 2) the latent
subspaces used to maintain specific object properties
are largely stable across tasks in vanilla RNNs but not in
gated ones; and 3) RNNs embed objects in new represen-
tational spaces in which individual object feature axes are
more orthogonalized compared to the perceptual space,
enhancing separation of features. Our findings elucidate
the ways in which goal-driven RNNs adapt their latent rep-
resentations in response to task requirements.
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Methods
Behavioral task suite. We considered N-back tasks (N ∈
{1,2,3}) based on one of three distinct object properties
(i.e. feature; F ∈ {Location, Identity,Category} (denoted as
L, I,C), resulting in a total of 9 N-back task variants (Fig. 1a).
Naturalistic stimuli were generated using 3D object models
from the ShapeNet dataset (Klabunde et al., 2023), compris-
ing 4 object categories, each with 2 unique identities rendered
from various view angles, and presented at 1 of 4 possible lo-
cations. The training and validation datasets differed in their
viewing angles, necessitating view-invariant processing by the
model.

Model architecture. We developed a two-stage model that
delineates perceptual and cognitive processes (Fig. 1b). This
model processes sequences of images, utilizing an ImageNet
pre-trained ResNet50 (He et al., 2016) model to derive visual
embeddings. These embeddings, combined with a vector rep-
resentation of tasks (i.e. task index), are fed into a discrete-
time RNN module, which produces one of three possible re-
sponses: match, non-match, or no action at each time step.
Each network is trained to perform one (single-task) or multi-
ple tasks (multi-feature or multi-task or both). After training, we
analyzed activations from the penultimate layer of ResNet50
(i.e. the perceptual space), as well as the RNN activations dur-
ing the stimulus presentation and subsequent timesteps (i.e.
encoding and memory space respectively). We considered
the vanilla RNN, GRU, and LSTM.
Model training. We trained three groups of models that dif-
fered on their training diet: 1) single-task, single-feature:
trained on a single n-back task based on a single object
feature (e.g.1-back location); 2) single-task, multi-feature:
trained on a single choice of N for all three feature variations
(e.g. 1-back L, or C or I); 3) multi-task, multi-feature: en-
compassing all choices of N (1,2,3) and features (L, I,C). All
models reached > 90% accuracy on both train and valida-
tion datasets. The ensuing analyses utilized data collected
from models with 512 units for vanilla RNNs, and 256 units for
GRUs and LSTMs.

Results

Naturalistic object information in task-optimized RNNs.
We first investigated whether task-relevant and -irrelevant ob-
ject features are retained by each model during task perfor-
mance. To probe this, we fitted decoders to predict each ob-
ject property from the RNN hidden state activity from the first
timestep of each trial (e.g. F = Li vs. F = L j ̸=i decoders,
total 4 location decoders). We found that while task-irrelevant
object features are not preserved in single-task single-feature
models (Fig. 2b left), they are well-preserved (i.e. decod-
ing accuracy > 85%) in multi-feature and multi-task models
(Fig. 2b middle and right). In other words, the RNNs retained
a complete picture of the object representation in their latent
space regardless of which object properties were required for



Figure 1: Tasks and Models: a) Left: An example of a 2-back
category task; Right: 9 task variations of N-back constructed
from different choices of task-relevant features (L, I,C) and N
(1,2,3) index. b) The sensory-cognitive model architecture. c)
Performance of GRU models.

performing the task 1.
Consistency of object representations in RNNs across
tasks. Having observed that both task-relevant and -irrelevant
information are retained by the multi-feature RNNs, we next
asked whether information about object properties are reli-
ably encoded in a common latent subspace within the RNN.
To probe this, we trained decoders to predict object proper-
ties from the RNNs’ activations, and then evaluated the de-
coder on other tasks (i.e., cross-task decoding). We found that
the gated RNNs (GRU and LSTM) used highly task-specific
subspaces to encode object properties, while vanilla RNNs
encoded shared object properties across all task-variations
(Fig.2a,c). This suggests that gated RNNs tend to learn task-
specific subspaces that do not generalize across tasks, po-
tentially impacting their ability to quickly adapt to new tasks.
Moreover, these results provide a setup for testing hypotheses
about the architecture of the recurrent mechanisms in brain
areas such as prefrontal cortex underlying WM.
Representational orthogonalization in task-optimized
RNNs. To improve their performance, RNN weights are likely
optimized to obtain more structured and separable geometri-
cal representation for each task-relevant feature. We hypoth-
esized that to effectively solve the task, the RNN latent space
may orthogonalize feature representations beyond their per-
ceptual representation. To quantify orthogonalization, we cal-
culated the angles between all pairs of decision hyperplanes
using cosine similarity. We then summarized these angles into
a single orthogonality measure by computing the Frobenius

1The observation was consistent across all tested model architec-
tures unless otherwise specified.

Figure 2: Object representation in RNN hidden state: (a)
We trained decoders on task-relevant object properties and
subsequently evaluated their generalization performance to
other tasks. Each row and column of each big 3×3 heatmaps
correspond to on which N-back task the decoders are trained
and tested on. Within each heatmap, each column repre-
sents a different decoder, denoted by Dk,F (k ∈ {1,2,3},
F ∈ {L, I,C}) (indicating which task and decoding feature the
decoder was trained on), while each row corresponds to the
object property of the task the decoder was tested on. Left:
Vanilla RNN, Right: GRU. (b) Validation accuracy of decoders
trained on RNN latent space activations from the first timestep
of each trial to predict object properties. Each column in
each heatmap represents the object property the decoder was
trained on, while each row corresponds to a model. GRU mod-
els of Upper: single-task single-feature, Middle: single-task
multi-feature, Bottom: multi-task multi-features. c Quantifica-
tion of the validation accuracy (within the same task, indicated
in purple) and generalization accuracy (across tasks with dif-
ferent task-relevant features, indicated in yellow) across all
model architectures.

norm of the difference between this matrix and the identity ma-
trix (denoting an idealized orthogonal space). We defined this
measure as the orthogonalization index (O, Figure 3b). Con-
sistent with our hypothesis, we observed that compared to the
perceptual space, the RNN latent space orthogonalizes the
axes along which distinct object features are represented, en-
abling structured and enhanced separation of these features.

Conclusion

By analyzing the representational geometry of different
classes of RNNs, we showed that RNNs maintain object in-
formation regardless of their task relevance and they further
orthogonalize the objects’ embeddings beyond their percep-
tual representation. However, while the underlying subspace
for encoding different object features are stable across tasks
in vanilla RNNs, they are highly task-specific in gated RNNs.



Figure 3: Orthogonalization: a) a schematic of two hypo-
thetical object spaces in a 3D space. ri, j represents the an-
gle formed by the decision hyperplanes that separate feature
value i or j from the others. Left: non-orthogonalized rep-
resentation; Right: orthogonalized representation. b) Nor-
malized orthogonalization index, for both perceptual and en-
coding spaces respectively (denoted as O(Perceptual) and
O(Encoding)). Data points fall below the diagonal line indi-
cate a more orthogonalized representation in the RNN encod-
ing space.

Together, our analyses shed light on how high-dimensional
object representations are maintained in multitask RNNs and
highlights critical representational differences as a function of
network architecture. Future work will test these predictions
with human brain data during the performance of same tasks.
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