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Abstract

Continual learning models must learn sequentially from
a changing data distribution, while accumulating pre-
viously learned knowledge without forgetting. Replay
and parameter regularization are two prominent mecha-
nisms that have shown promise in deep learning mod-
els but have only been explored for spiking neural net-
works in few works. In this work, we study the appli-
cation of replay to domain-incremental learning in spik-
ing neural networks and see if metaplasticity and synap-
tic consolidation can help efficient continual learning.
We demonstrate that simple replay schemes can achieve
state-of-the-art performance and that the incorporation of
metaplasticity can increase performance when using low
buffer sizes. This approach can serve as a baseline for
efficient continual learning that can reduce memory and
training overhead of replay.
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Introduction & Motivation

Continual learning, where the model incrementally learns
from a non-stationary stream of data, faces the issue of
catastrophic interference. Several methods address this is-
sue, such as task-specific architectures, regularization, re-
play/rehearsal, and template-based classification (Ven, Tuyte-
laars, & Tolias, 2022). Replay in particular is the recall and
training of previous experiences and neuroscience experi-
ments show that sleep can be related to memory consolida-
tion (Wilson & McNaughton, 1994). This is an effective tech-
nique for preserving past knowledge while learning new infor-
mation between tasks, either by storing past data in a memory
buffer or a generative model to generate synthetic samples
from prior data to replay.

Replay alone has been shown to outperform other ap-
proaches in both domain-incremental and class-incremental
scenarios (Ven et al., 2022). However, this performance re-
quires additional compute and memory overhead, requiring
offline training phases and increasing the number of training
iterations. Unlike replay, regularization methods rely on lo-
cal information to preserve knowledge. Although these ap-
proaches aid in continual learning in different ways, there have
been limited studies exploring the potential benefits of their in-
tegration, particularly in spiking networks (Proietti, Ragno, &
Capobianco, 2023). In this work, we investigate a two-stage
process for replay with regularization in spiking networks.

Experimental Set-up
The network architecture is described in Fig. 1 and learning is
event-driven random backpropagation (eRBP) (Neftci, Augus-
tine, Paul, & Detorakis, 2017). The replay buffer stores raw
input samples in memory. The samples selected for replay
will be random and will be the raw image data. The buffer up-
date will be proportional to how many tasks have been trained
so far. For example, after training on N tasks, there will be a
replay buffer Q consisting of N sets of size K

N , where each set
contains randomly selected samples to be replayed from the
Nth task. The discarded samples will be randomly selected.
The training methodology used here is a two-stage process.
In the first stage, the network will learn from a given task and
then update the replay buffer once the task has completed
training. Next, the network enters a replay stage where the
data is rehearsed from all prior tasks before moving onto sub-
sequent tasks.

Figure 1 Proposed two stage continual learning model with
experience replay combined with parameter regularization in
a 3-layer spiking network. Local surrogate gradient learning
on two part LIF neurons (network size: 784x200x2). Orange
arrow in Stage 1 show buffer update. Orange arrow in Stage
2 show buffer complements training sequence. Green arrows
show error feedback. Blue arrows show forward propagation
of samples

There are two regularization techniques explored for in-
tegration with replay. First is metaplasticity, the plastic-
ity of plasticity, which regulates the ability of a synapse to
change its synaptic strength. Specifically, plasticity is com-
puted f (m,w) = e−|mw|, where m is a metaplastic param-
eter and w is the weight. The parameter m is incremen-
tally updated to estimate a neuron’s importance. The second
regularization technique is consolidation which introduces a



Buffer Size (K) 500 1000 2000 4000

Mean Accuracy (MA) 66.23% 72.41% 79.55% 85.03%
Std. Deviation ± 0.66 ± 1.04 ± 1.67 ± 0.21

Table 1 Split-MNIST Mean Accuracy on testing set for varying
replay buffer sizes.

slow moving synaptic component, wre f , and balances learn-
ing and retention through decay such that whenever a post-
synaptic neuron spikes the synapses are changed accord-
ing to ∆wi, j(t + 1) = −α(wi j(t)− wre f

i j (t)) (Soures, Helfer,
Daram, Pandit, & Kudithipudi, 2021). To integrate these tech-
niques with replay we propose modified regularization during
the replay, while the training proceeds as normal with regu-
larization. The change in metaplastic parameter m will be
scaled by c while the decay rate for consolidation is scaled
by v. The loss function can be described as the following:
Ltotal(θ) = Lcurr(θ)+Lreplay(θ,c,v), where θ is the parame-
ters to the network.

In this evaluation setting, the task identity is not provided
during inference and does not need to be inferred, known
as domain-incremental learning. Specifically, there are five
tasks with two classes per task for each dataset. Samples
are presented to the network in a streaming fashion (only one
sample at a time and only one epoch), and after each task
is learned by the network, the network is evaluated on test
sets from all tasks (both seen and unseen). Performance is
measured by the Mean Accuracy (MA) which is defined as
MA = 1

N ∑
N
t=1 Rt,N , where Rt,N is the accuracy of the task

T t after training on task T N . We also use Forward Trans-
fer, FWT = 1

N−1 ∑
N−1
K=1 ∑

N
t=K+1

Rt,k−Rt,k−1

N−K which describes the
average change in accuracy across the tasks t > k after it
has learned T k. And finally, we use Backwards Transfer
BWT = 2

N(N−1) ∑
N
k=2 ∑

k−1
t=1 (R

t,k −Rt,k−1) which describes the
average change in accuracy across tasks t < k after it has
learned T k (Kudithipudi et al., 2023).

The baseline model uses only replay in between tasks. We
evaluate the performance of the baseline model for various
buffer sizes (K = {4000,2000,1000,500}). To study the in-
tegration of replay with regularization, we use a buffer size of
K = 2000, similar to (Rebuffi, Kolesnikov, Sperl, & Lampert,
2017). In these experiments the regularization techniques are
added to the model during training and scaled during replay
stages.

Results and Discussion
Replay alone showed a significant increase in mean accuracy,
as expected. By introducing regularization with replay, specif-
ically metaplasticity shown in Table 2, we observe ≈ 10% in-
crease in mean accuracy with a buffer of 500 samples. An in-
teresting observation is that the model shows higher forward
transfer (FWT) which shows how well the network retains and
transfers knowledge across tasks. We also extended the test
to FMNIST dataset which only showed a marginal increase

MA FWT BWT

c F-MNIST MNIST F-MNIST MNIST F-MNIST MNIST
0 88.26% 65.03% 12.66 0.2 -4.89 -15.03
0.1 87.23% 73.66% 11.91 0.62 -5.26 -9.84
0.5 87.97% 75.31% 12.24 1.21 -5.05 -8.54
1 88.46% 74.98% 12.58 1.02 -4.88 -9.36

v F-MNIST MNIST F-MNIST MNIST F-MNIST MNIST
0 80.02% 74.80% 12.57 4.26 -9.43 -11.17
0.1 83.89% 65.59% 10.06 1.54 -7.38 -16.04
0.5 80.25% 68.02% 13.11 3.30 -8.69 -14.66
1 7973% 65.85% 14.06 3.96 -9.31 -15.27

Table 2 Mean Accuracy (MA), Forward Transfer (FWT), Back-
ward Transfer (BWT) for split-FMNIST (Xiao et al., 2017) and
split-MNIST (Lecun et al., 1998) testing sets. Buffer size =
500 samples and v varies the amount of decay in consolida-
tion, while c varies the amount of metaplastic synaptic weight
change.

c 0 0.1 0.5 1.0

K=2000 82.84% 72.02% 84.34% 83.50%
K=500 65.03% 73.66% 75.31% 74.98%

Table 3 split-MNIST performance with varying metaplasticity
(c) and buffer size (K).

in performance (0.20%). The important conclusion from this
result is that metaplasticity can increase performance with
lower buffer sizes. For example, replay with metaplasticity was
able to achieve 84.34% using 2000 samples, which was sig-
nificantly higher than the 79.55% baseline and close to the
85.03% achieved with double the buffer size. However, it is
also important to note that as the buffer size grows, the bene-
fit of metaplasticity during replay decreases, as shown by the
≈ 1.5% increase in performance with a buffer of 2000 (Ta-
ble 3). In contrast to metaplasticity, consolidation did not help
performance under any circumstances and does not integrate
well with replay.

This preliminary work investigates regularization during re-
play in spiking networks. We show that there is a possibility
of saving memory space by using a smaller buffer size with
metaplasticity, to increase mean accuracy. Further analysis is
needed by including several trials with a wider range of meta-
plasticity parameter c. Although metaplasticity improvement
on a small buffer size can be observed in split-MNIST, the
same amount of improvement is not shown in split-FMNIST;
the metaplastic parameter could be sensitive to the training
data distribution. Future work can include combining both
metaplasticity and consolidation with replay, since the two reg-
ularization techniques together have been shown to support
continual learning in spiking networks (Soures et al., 2021).
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