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Abstract
Cognitive scientists have proposed normative and
heuristic principles that describe human subgoal choices
and their partitioning of problems into smaller ones. Here
we study the processes through which these choices
or partitions arise. Building on the graph-based tasks
from prior work, we train neural networks on shortest-
path traversal to test whether human-like task decompo-
sition emerges over learning. We find that a simple trans-
former develops a preference for paths containing nodes
that occur frequently on the shortest paths in the graph,
consistent with human subgoal preferences. This prefer-
ence is strongest early in model learning, a phenomenon
that might also be observed in human learners. We also
find evidence of implicit subgoal selection in the models.
These results lay the ground for using neural networks to
study how humans learn to decompose tasks and select
subgoals by integrating over relevant experiences.
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Background
Researchers have long sought to understand human task de-
composition and subgoal choices. Recent work advanced
this understanding by identifying common “hub” states peo-
ple choose as subgoals on graphs of connected states, then
mathematically characterizing the considerations that might
guide such subgoal selection (Correa, Ho, Callaway, Daw,
& Griffiths, 2023; Solway et al., 2014; Tomov, Yagati, Ku-
mar, Yang, & Gershman, 2020). For example, Correa et al.
(2023) collected human subgoal choices from diverse graphs
and systematically compared them with prior accounts, find-
ing that human choices were highly consistent with a simple
graph property: betweenness centrality (BC). That is, people
tend to choose as subgoals those states that most frequently
appear on the shortest paths in the graph.

Normative or heuristic principles closely capture human
subgoal choices as an end-product, but it is unclear what
processes implement such choices or whether subgoal pref-
erences can be learned. Here, we explore the idea that
centrality-based subgoal choices may be learned through
traversal experiences within graph-like environments. By opti-
mizing towards more efficient (i.e., shorter) traversals, we be-
come sensitive to nodes with high BC and come to choose
paths with such nodes over other paths.

We explore these questions using neural networks, ana-
lyzing the behavior of models trained to find shortest paths.
We use simple two-layer transformers (Vaswani et al., 2017),

following earlier work showing that transformers can acquire
sensitivity to structures in the training data and even develop
the ability to decompose tasks (Li & McClelland, 2023; Man-
ning, Clark, Hewitt, Khandelwal, & Levy, 2020).

Method
Task and dataset. We built on the 30 8-node graphs used in
the human experiment in Correa et al. (2023) and generated
10 isomorphic graphs for each unique graph. The dataset
comprises all start-goal pairs in these graphs whose shortest
path(s) contain at least one intermediate node. We use 75%
of the pairs during training and hold out the rest for evaluation.
Each time a start-goal pair with multiple shortest paths ap-
pears during training, we uniformly sample a candidate path
to supervise the model. We also created a dataset using 50
randomly generated 15-node graphs to examine whether the
same results scale. Our reported results are based on 8-node
graphs, but we found similar results using 15-node graphs.

Model. We train both a standard autoregressive decoder-
only model to generate shortest paths one node at a time and
a masked model that generates all intermediate nodes in par-
allel (Fig 1B). For our main results, the input to both models
includes a learnable graph token for each isomorph of each
graph, a start node, and a goal node. After an input em-
bedding layer, both transformers include two layers of single-
headed self-attention and feed-forward sublayers, with future-
masked attention in the autoregressive models and all-to-all
attention in the masked models. Autoregressive models are
trained using teacher-forcing and evaluated with top1 rollout.
Masked models are trained and evaluated using path comple-
tion where intermediate nodes on the target path are masked
out. All results are aggregated across four model seeds.

Results and Discussion
Our models successfully learn the shortest path task and gen-
eralize to held-out paths with 80% or greater sequence-level
accuracy (Fig 1C). The key behavior of interest is which path
the models choose on start-goal pairs with more than one pos-
sible shortest path. For each isomorph of each graph, we sup-
ply its learned graph token and evaluate on held-out start-goal
pairs with at least two intermediate nodes.

Model path preference. Models show preferences for
paths with high centrality scores (Fig 1D1). The model-
predicted paths more often have the highest average BC
across intermediate nodes compared to randomly-chosen
shortest paths. Because paths with high average BC often
coincide with paths with high average degree centrality (DC),
the models also show a DC preference. We use path regres-
sion similar to Correa et al. (2023) to compare how the quan-
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Figure 1: A. Example graph. B. Model architecture. C. Sequence-level accuracy on held-out paths. D. D1. Preference scores:
how often the model-predicted path has the highest average BC/DC score; BC=betweenness centrality; DC=degree centrality.
Baseline: preference score under randomly chosen shortest path. D2. Path regression using normalized log BC/DC values to
predict model path choices; BF=Bayes Factor. E. BC preference over learning (baseline adjusted). Filler models are trained with
additional filler paths to balance state visitation. F. Accuracy for decoding output nodes in each layer of the masked models.
Error bars in C, D1, F indicate standard deviation across model runs. Error shades in E indicate the standard error of the mean.

titative BC and DC scores track model path preferences, and
confirmed that BC is a better predictor (Fig 1D2). Although
the effects are small, they are statistically reliable (Bayes Fac-
tors for regression pairs across seeds > 788). To disentangle
BC with state frequency, we also generated a dataset with ad-
ditional filler paths to increase visitation to less-visited states
in each graph. We found similar path preferences in models
trained on this alternative dataset.

Centrality preference over learning. We next examined
how model path preference changed (relative to baseline) as
models learn the task over 30k gradient steps (Fig 1E). The
learning trajectory shows an initial surge in reliance on cen-
trality followed by a gradual decrease, suggesting that models
acquire sensitivity to these frequently-encountered nodes on
shortest paths early and learn paths through these nodes first.

Implicit subgoal selection. We have compared model
path choices to human subgoal choices as, unlike humans,
we cannot explicitly probe model subgoal choices. However,
we tested if the models implicitly choose subgoals on the way
toward specification of the full path. We trained multinomial lo-
gistic regression classifiers to decode the output nodes on the
predicted path from the token representations in each layer of
the masked models (node frequencies balanced with down-
sampling). The decoders can successfully predict some out-
put nodes after the first layer (Fig 1F, layer 0). We further
tested whether node distance to start/goal and node BC con-
tributed to decoder success in predicting output nodes at layer
0, on samples held out from decoder training. Both node BC,

χ2(1) = 16.89, p<0.001, and node distance, χ2(1) = 15.56,
p<0.001, were significant predictors, with no significant inter-
action. The fitted coefficients suggest that the decoders more
likely predicted nodes of higher BC and in the middle of the
path correctly, consistent with the view that models implicitly
choose high BC nodes as subgoals in the early layer.

Generalizing to new graphs. The models discussed so
far generalize to unseen paths in known graphs but cannot
be tested on novel graphs. We experimented with replac-
ing the graph token with edge tokens to signal graph con-
nectivity information to the model, where each edge token
is the summed embedding of two nodes. Two-layer edge-
token models are somewhat successful at finding shortest
paths in completely novel graphs (sequence-level accuracy:
autoregressive≈80%, masked≈60%). These models also
strongly benefit from more layers to achieve higher accuracy
due to the use of in-context search over edge tokens. In
addition, edge token models appear to rely more on degree
centrality, especially on smaller graphs, potentially learning to
count degree centrality from edge tokens. We continue to ex-
plore the different solutions learned by these different models.

Conclusion

Transformers trained to find shortest paths show path prefer-
ences consistent with human subgoal preferences and show
signs that early model layers implicitly select subgoals. Model
learning dynamics suggest hypotheses about human learning.
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