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Abstract: 

Large Language Models (LLMs) are improving at an 
incredible rate. With increasing scale comes emergent 
properties, including an ostensibly human-like 
understanding of the world. However, it is difficult to 
assess how these models process and represent 
information and it is not clear how best to measure their 
similarities with humans. To help meet this need, we 
developed a generalizable behavioral task for LLMs 
(sometimes called a “Turing Experiment”) based around 
pairwise behavioral ratings to facilitate a 
representational similarity analysis (RSA) that measures 
alignment among LLM and human agents. Using this 
method, which we refer to as “Turing RSA,” we 
quantified how aligned the similarity ratings that 
different LLMs provided for a well-studied set of stimuli 
from the cognitive neuroscience literature were to 
human responses at a group and individual level. We 
found GPT-4 to be the best current proxy of human 
behavior among its family of models across text and 
image modalities, but that the inter-individual variability 
among human participants is hard to reproduce with 
LLMs. We show that RSA helps us understand how LLMs 
encode knowledge about the world, examine the 
variability among agents, and measure their 
representational alignment with humans. 

Keywords: Large Language Models, Explainability, 
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Introduction 

The rapid pace of LLM improvement (Kaplan et al., 
2020) requires a scalable, generalizable method for 
understanding how these powerful models represent 
knowledge about the world and how these 
representations might differ from human knowledge. 
This is complicated by the ostensibly black box nature 
of LLM reasoning. However, this opacity resembles the 
problem the human mind poses for cognitive 
neuroscientists. We therefore expect that tools 
developed in that field (and related ones) will be of great 
use in understanding these large neural networks.  

One of the most powerful methods for mapping the 
structure of how a human participant represents 
information about the world, is the use of similarity or 
dissimilarity ratings with respect to a pair of stimuli 

(Shepard, 1980). This straight forward but high-level 
task is adaptable to a wide array of domains and 
questions (e.g., “How similar are the words ‘apple’ and 
‘hand?’” or “How similar are these two images?”). 
Ratings given by participants on each trial comprise a 
pairwise behavioral distance metric (Hout et al., 2013). 
This task is especially useful when the experimenter 
does not have direct access to the participant’s internal 
representations (e.g., neural responses or model 
embeddings), such as for LLMs. Representational 
similarity analysis (RSA; Kriegeskorte & Kievit, 2013) or 
representational alignment (Sucholutsky, et al. 2023) is 
an analysis framework that leverages correlations 
among such distance, or dissimilarity, matrices 
(“DSMs”), thereby quantifying the alignment of different 
representational spaces. This method has been applied 
to understand representational geometries across 
diverse systems including different organisms 
(Kriegeskorte et al., 2008), individuals, brain regions 
(Cichy et al., 2014; Giordano et al., 2023; Ogg et al., 
2019), behavior (Carlson et al., 2014; Ogg & Slevc, 
2019) or computational models (e.g., Meher et al., 
2021; Ogg & Skerritt-Davis 2021).  

We designed a “Turing Experiment” (Aher et al., 
2023; Mei et al., 2024) we term “Turing RSA” that 
adapted a pairwise similarity rating task from the 
cognitive neuroscience literature to probe the 
representational geometry of frontier LLMs via RSA. 
We asked different simulated LLM participants to 
provide a similarity rating for a set of well-studied text 
and image stimuli (but see Grootswagers & Robinson, 
2021) and used these ratings to quantify the alignment 
of knowledge representations between (and within) 
groups of LLM and human participants. 

Methods 

We elicited responses from different versions of Open 
AI’s Generative Predictive Transformer (GPT) models 
(Brown et al., 2020) via the Open AI Azure API. We 
used a GPT-3.5 Turbo model (“gpt-35-turbo-16k,” 
version “0613”), a GPT-4 model (version “1106-
preview”), and a GPT-4-vision model (version “vision-
preview”). For each experimental run (i.e., simulated 
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participant) we initialized the model, using a 
temperature of 1.0 (higher than the default 0.7, to 
encourage diverse responses). Participants were 
simulated following Aher and colleagues (2023) by 
assigning the LLM agent a surname (Garcia, 
Jeanbaptiste, Kim, Nguyen, Olson, Rodriguez, Smalls, 
Snyder) and honorific (Ms., Mr., Dr.). The cost of the 
vision models was higher so these were run with just 
four surnames and without the “Dr.” honorific.  

On each trial the model was asked to rate how similar 
a pair of 67 word (from Carlson et al., 2014) or image 
(from Kriegeskorte et al., 2008; Cichy et al., 2016) 
stimuli were on a scale from 0 to 100. We compared 
LLM ratings with: 1) human semantic relatedness 
ratings for the class label words (from Carlson et al., 
2014) and 2) with behavioral (SPOSE) embeddings 
learned to predict a large number of leave-one-out 
behavioral ratings for images from the THINGS 
dataset (see Hebart et al., 2020). Comparisons with 
SPOSE embeddings were restricted to the 55 
overlapping object classes between the stimulus sets.  

We averaged the responses among participants for 
each model (or among humans) and computed a 
Spearman rank correlation among the flattened, 
group-level dissimilarity matrices. To evaluate inter-
subject agreement, we computed correlations among 
pairs of individual LLM or human participant’s DSMs.  

Results 

The results of this experiment are conveyed in Figure 1, 
which shows the group-averaged DSMs and the 
Spearman correlations among them (all p < 0.05). GPT-
4 ratings were the most similar to the human 
participant’s text ratings (rs = 0.70), showing much 
better alignment than GPT-3.5 (rs = 0.46). The GPT-4-
Vision alignment with human data was also modest. 
Notably, GPT-4 text-only ratings were better aligned 
with human SPOSE embeddings which were generated 
based on images rather than text. Similar results were 
obtained when GPT-4-Vision rated pairs of images from 
the THINGS database.  

Model variability is summarized in Figure 2, showing 
that the increased alignment of GPT-4 models comes 
at a cost of greater homogeneity among individual 
participant ratings that thus fail to capture the natural 
variability of human participants (despite a higher 
temperature value). Indeed, no model reproduced both 
the overall range and median inter-participant 
alignment observed among the human participants. 

 
 
Figure 1: DSMs for each model system averaged over 
individual participants (except SPOSE) along with the 
Spearman rank correlations among them (all p < 0.05). 
 

 
 
Figure 2: Inter-participant variability of human and LLM 
participants via Spearman rank correlation among each 
pair of participants for each model (y-axis). 
 

Discussion 

We report a powerful, flexible Turing Experiment for 
querying LLM knowledge and measuring alignment with 
human representations, demonstrating that GPT-4's 
text representations capture semantic similarity across 
input domains and align most closely with human 
judgments. However, inter-individual variability is still an 
outstanding issue among the LLMs we evaluated, as no 
model adequately reflected this dimension of human 
behavior. 
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