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Abstract
In self-supervised learning, different stimulus categories
correspond to unique manifolds within an embedded neu-
ral state space. Accurate classification can be achieved
by separating the manifolds from one another during
learning, in a process that is analogous to a packing prob-
lem. To theoretically investigate the dynamics of ‘neural
manifold packing’, we consider Stochastic Gradient De-
scent (SGD) for particle systems in physical dimension.
In this framework, SGD aims to minimize a hinge-loss,
L, proportional to the particles’ overlaps, by performing
gradient descent on a batch of randomly selected parti-
cles. The resulting stochastic dynamics exhibit a critical
packing efficiency, φc, below which the system reaches
an ‘absorbing’ state with zero classification error, L = 0,
and above which the system settles in an ‘active’ steady-
state with L> 0 . We thus explore the connection between
the dynamics of SGD and of a well-characterized absorb-
ing state model known as Biased Random Organization
(BRO) that evolves the particle positions with random
kicks. We show that in the limit of small kick sizes and
learning rates, BRO and SGD on a hinge-loss are equiv-
alent, and exhibit the same critical packing efficiency
φc ≈ 0.64. Further, we demonstrate that the behavior of
SGD near the critical point is consistent with the Manna
universality class. Thus, we propose that ‘neural manifold
packing’ by SGD in high-dimensions is mean-field, given
that Manna universality reduces to mean field critical be-
havior in d > 4. This work furthers our understanding
of self-supervised learning dynamics and opens avenues
for designing learning algorithms based on physical prin-
ciples.
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Introduction
In self-supervised classification tasks, each class is repre-
sented by a distinct manifold within the embedded neural state
space. Consequently, self-supervised learning can be under-
stood as the process of separating neural manifolds (Chung,
Lee, & Sompolinsky, 2016). This process is reminiscent of
high-dimensional packing problems in mathematics, and of
the packing of physical objects in three-dimensional space.
To connect the physical packing problem with the packing of

manifolds in neural state space, we consider the case where
the embedding space is three-dimensional, d = 3, and the
manifolds are approximated by spheres of the same size (n.b.,
we make this simplifying assumptions because the nature of
the critical phenomena we study do not depend on the par-
ticle size distribution). Dynamical physics models that rely
on the minimization of short-range, repulsive pairwise inter-
actions are frequently employed to investigate such systems
(O’Hern, Langer, Liu, & Nagel, 2002). An alternative view-
point is provided by “absorbing state models” that evolve par-
ticle positions through stochastic dynamics rules without ex-
plicitly defining a potential, leading to a transition between an
‘absorbing state” where halts as all geometric constraints are
met, and an “active state” where it maintains dynamic equi-
librium due to unresolved constraints. One such model is Bi-
ased Random Organization (BRO), in which overlapping parti-
cles are randomly displaced away from one another. (Wilken,
Guerra, Levine, & Chaikin, 2021; Wilken, Guo, Levine, &
Chaikin, 2023).

To address the neural manifold packing problem underlying
self-supervised learning, we consider SGD on particle sys-
tems with pairwise, short-range interactions, corresponding to
a hinge loss. We first demonstrate analytically that the dy-
namics of BRO closely resemble those of particles governed
by a linear repulsive potential influenced by multiplicative self-
quenching noise. Subsequently, we show that SGD of the
hinge loss is equivalent to BRO in the limit of small learn-
ing rate (and small kick size for BRO). Notably, both BRO
and SGD exhibit the same critical point in three dimensions,
φc ≈ 0.64, corresponding to the maximum lossless packing
efficiency. Further, we observe that SGD exhibits behavior
consistent with the Manna universality class near the criti-
cal point.1 This consistency persists across various batch
sizes and even in the noiseless (gradient descent) scenar-
ios. This equivalence thus allows us to conceptualize neu-
ral manifold packing by SGD in terms of a well-characterized
self-organizing physical model, and to draw conclusions about
neural manifold packing in high dimensions.

1Models belonging to the same universality class exhibit similar
scale-invariant behavior near critical points, for instance in their tem-
poral correlations and spatial structure. The Manna universality class
represents a family of models that, through a series of cascading
events, dynamically evolve towards a critical scale-invariant state.



The stochastic approximation of BRO and SGD
In the BRO model, spherical particles with radius R are ran-
domly placed in a periodic box with volume fraction (viz., den-
sity) φ. Overlapping particles (i.e., whose centers are closer
than 2R) are identified as being “active”, and their dynamics
evolved as follows. Active particle i is kicked by neighboring
overlapping particles j, each contributing an equal unit vector
along the direction connecting their centers, xi−x j

|xi−x j | . The sum-
mation over all neighboring unit vectors is scaled by a ran-
dom number sampled from a uniform distribution over [0,ε],
where ε is the ‘kick size’. By means of stochastic approxima-
tion (Li, Tai, & Weinan, 2017, 2019; Hu, Li, Li, & Liu, 2019),
we find that BRO dynamics can be approximated by particles
with pairwise, linear, repulsive interactions driven by a multi-
plicative noise process, which reads

xi
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iL+ ε
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where ξ
i
k is the standard Gaussian noise for particle i at step

k, L = ∑i ∑ j>i U(xi
k −x j

k) is the total energy/loss obtained by
summing the pairwise interactions,

U(r) =
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(2)

Figure 1: (a) In BRO each active particle is randomly kicked
away from its overlapping neighbors. (b) In SGD two particles
(shaded) are selected (batch size, B = 2) out of the |Qk| = 5
active particles, and they are displaced by gradient descent.

We devise a particle-wise SGD method inspired by the
commonly employed SGD approach in self-supervised learn-
ing. During each iteration k, a batch is formed by randomly
selecting B (denoted as the batch size) particles from the set
of all active particles. Each particle i in this batch undergoes
a displacement −α∇iL where α is the learning rate, and L is
the total energy/loss. The unselected particles remain undis-
turbed at this iteration. This iterative process continues until
the system’s energy reaches L = 0, or a steady-state value
L > 0. Following the same stochastic approximation approach
as above, we approximate the particle-wise SGD dynamics as
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where b f = B/|Qk|. Qk is the set of active particles at time
step k, and |Qk| is the number of active particles (viz., the
cardinality of Qk). Interestingly, the noise term in Eq. 3 has
the same functional form as in Eq. 1, revealing that the noise

processes in SGD and BRO are of the same nature, despite
the differences in their microscopic mechanism.

Critical behavior of SGD
In BRO, the absorbing phase transition between absorbing
(L = 0) and active states (L > 0) approaches a limiting crit-
ical volume fraction (viz., packing efficiency), φc ≈ 0.64, for
infinitesimal kick sizes (ε → 0), in three-dimension. We show
that SGD exhibits a transition at the same critical volume frac-
tion, φc → 0.64, as the learning rate α = ε/bc → 0. It has
been shown that the behavior of BRO at criticality belongs to
the Manna universality class (Wilken et al., 2021, 2023), and it
is natural to ask whether SGD is also in the Manna class. We
measure the fraction of active particles at the steady state, f a,
and the typical relaxation time, τ, required to reach the steady
state. We test this hypothesis by performing finite-size scal-
ing analysis at different batch sizes, b f = B/|Qk|, to check
the critical behavior f a ∼ (φ−φc)

β and τ ∼ |φ−φc|−ν∥ in the
proximity of φc using Manna exponents(Henkel, Hinrichsen,
& Lubeck, 2009). Fig. 2 displays the scaled activity and re-
laxation time across various system sizes. These transition
curves for varying system sizes collapse. Moreover, this col-
lapse is observed for different batch sizes. It is worth noting
that for b f = 1.0, SGD reduces to gradient descent (GD), the
zero noise limit of SGD. Therefore, the critical behavior of SGD
and GD is consistent with the Manna universality class.

Figure 2: Finite size scaling analysis for SGD: Steady-state
activity as a function of volume fraction for (a) b f = 0.2 and
(b) b f = 1.0. Relaxation time as a function of volume fraction
for (d) b f = 0.2 and (e) b f = 1.0. ν∥ = 1.08,β = 0.84 and
ν⊥ = 0.59 are Manna exponents in d = 3.

Discussion
We show that BRO dynamics are equivalent to those of lin-
early repulsive particles driven by multiplicative noise. We
then bridge SGD and BRO by showing that the batch selection
noise in SGD shares the same form as the multiplicative noise
in BRO. Furthermore, we demonstrate that the critical behav-
ior of SGD is consistent with the Manna universality class. We



thus propose that when the dimensionality of the neural state
space is d > 4 and the number of classes (equivalent to the
number of particles in our model) becomes large, the critical
behavior of neural manifold packing by SGD converges to the
mean-field universality class given that the upper critical di-
mension for the Manna universality class is d = 4. In future
work, we will generalize our analysis to ellipses to better cap-
ture the low-rank structure of neural manifolds. This work thus
paves the way for understanding how neural manifolds could
evolve through a mechanism equivalent to SGD or, even, only
through multiplicative noise. Our results can be extended to
higher dimensions, offering a way of designing learning algo-
rithms based on physical principles.
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