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Abstract
Looking at the world involves not just seeing things, but
feeling things. Feedforward machine vision systems that
learn to perceive the world without physiology, thought,
or feedback that resembles human affective experience
offer tools to demystify the relationship between seeing
and feeling, and to assess how much of affective experi-
ences may be a function of representation learning over
natural image statistics. We deploy 180 deep neural net-
works trained only on canonical computer vision tasks
to predict human ratings of arousal, valence, and beauty
for images from multiple categories (objects, faces, land-
scapes, art) across two datasets. We use features of these
networks without additional learning, such that we linearly
decode human affective responses from network activity
just as one decodes information from neural recordings.
We find that features of purely perceptual models predict
average ratings of arousal, valence, and beauty with high
accuracy: On average, models in our survey explain 53%
of explainable variance in human responses; the most
predictive model explains 72%. These results add to grow-
ing evidence for an information-processing account of
visually-evoked affect linked to representation learning
over natural statistics, and hint at a locus of affective and
aesthetic valuation proximate to perception.
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Introduction
Looking at the world usually means feeling the world. Though
often studied in isolation, perception and affect are linked in
everyday experience Merleau-Ponty & Smith (1962), at both
conscious and unconscious levels Barrett & Bar (2009); Bar-
rett & Bliss-Moreau (2009). Exposure to a beautiful, moving,
inviting, or aversive visual stimulus evokes processes beyond
what is often called vision, but where “seeing” stops and “feel-
ing” begins is unknown. The intimate link between “seeing”
and “feeling” in everyday experience makes disentangling the
computations that undergird these processes challenging.

Here we use a survey of visual machines – which only see
and cannot feel – to predict how humans respond to a diverse
set of natural images. Our goal is to better isolate the unique
contributions of visual perception to visually-evoked affect.

Past work in vision science Redies et al. (2007); Graham &
Field (2007); Graham & Redies (2010); Hughes et al. (2010);
Brachmann et al. (2017); Redies et al. (2012); Mallon et al.
(2014); Graham et al. (2016) and machine learning Dong et al.
(2015); Lu et al. (2014); Kong et al. (2016); Sheng et al. (2018);
Goetschalckx et al. (2019); Hosu et al. (2019); Iigaya et al.
(2021); AlZayer et al. (2021); Geller et al. (2022); Karjus et al.
(2023) has examined relationships between image-computable
statistics and aesthetic and artistic image properties. Models
such as ‘Emo-Net’ Kragel et al. (2019), a modified machine
vision system, suggest image-computable feature extraction
pipelines work for predicting a variety of affective and emotional
responses (e.g. fear, surprise).

These efforts provide methodological groundwork for ex-
ploring the intersection of perceptual computation and affect.
However, no work at present addresses how far we can go
in predicting affect with perceptual computations alone, and
why such systems are effective. Here we survey 180 ma-
chine vision systems to determine the upper limit on affective
prediction–specifically, prediction of human arousal, valence,
and beauty ratings in response to natural images–from percep-
tual computations alone. We use variation across models (in
terms of architecture, task, and input) to begin to answer why
prediction is possible Cao & Yamins (2021a,b); Kanwisher et al.
(2023). Using a ‘model zoology’ approach Conwell et al. (2021,
2023), we find that purely perceptual computations of ‘affect-
less’ machines can predict the majority of explainable variance
in human arousal and valence and beauty ratings. We find that
the ability of these machines to predict arousal, valence, and
beauty is a function of representations these machines learn
through experience over many images, i.e., their hierarchically
structured knowledge of the visual world.

Methods

Our approach is to fit linear decoding models to features ex-
tracted from every layer of the models to assess whether infor-
mation that is predictive of affect is inherent to these features,
despite never being shaped to predict affective experiences.

We use OASIS Kurdi et al. (2017), a set of 900 images
spanning 4 categories (people, animals, objects and scenes),
with normed ratings of arousal and valence from 822 human
subjects. Ratings of beauty (from 751 subjects) were obtained
from a separate source Brielmann & Pelli (2019). We use
a second dataset consisting of 512 images across 5 distinct
categories (art, faces, landscapes, internal & external architec-
ture) Vessel et al. (2018), but for which only ratings of beauty
(”aesthetic appeal”) are available. This dataset allows us to
compare judgments of art to those of natural scenes, and to
internally replicate a subset of the results obtained with OASIS.

We calculate two forms of reliability as gauges of the compar-
ative performance of our models: ’mean-minus-one’ reliability
Vessel et al. (2018), i.e., iteratively removing one subject from
the subject pool and correlating that subject’s ratings with the
average ratings of the subjects remaining((rmmo)); and split-half
reliability (rsplit ), which involves splitting group-level data in half
10000 times and correlating each half with the other. This latter
metric provides an upper bound (a noise ceiling) on how well
any predictive model could do in predicting the mean rating.

The 180 models (252 including randomly-initialized ver-
sions of a designated subset) are sourced from 6 reposito-
ries: Torchvision (PyTorch) model zoo Paszke et al. (2019);
Pytorch-image-models (timm) library Wightman (2019); VISSL
(self-supervised) model zoo Goyal et al. (2021); Taskonomy (vi-
sualpriors) project Zamir et al. (2018); Sax et al. (2018, 2019);
The CLIP repository Radford et al. (2021); and the SLIP repos-
itory Mu et al. (2021). To predict arousal, valence, and beauty
from a given set of deep net features, we use regularized linear
regression with cross-validation. Our regression pipeline con-



Figure 1: Accuracy of Model-Predicted Affect Ratings. Each point is an individual subject or model. Gray horizontal bars
are Spearman-Brown split-half reliability noise ceilings for group-average affect ratings, and shaded horizontal cross-bars are
95% bootstrapped confidence interval of the mean across points; A shows scores of the most predictive layers in each model
(points in orange are untrained models). Gray points are mean-minus-one correlations of individual subjects to the group average.
A shows that the average trained model is (for arousal and beauty) about as predictive of group-average affect as the 32.5%
most taste-typical subjects, and about 70% accurate overall. Category-supervised models (purple) are no more predictive than
self-supervised models (red), but trained models are categorically more predictive than untrained models. B shows accuracies
across layer depth for category-trained and self-supervised models. X-axis is relative depth of layer in the network (0 = earliest, 1
= deepest), binned into slices of 10. Y-axis is average accuracy in that slice, in units of rPearson. Each point is a model trained on
ImageNet, with category-supervised models (trained on 1000-way supervision) in purple, and self-supervised models (trained with
category-supervision) in red. The deepest layers are most predictive, with a nearly monotonic increase in predictivity over layers.

sists of 4 phases: feature extraction; dimensionality reduction;
ridge regression; cross-validation; and scoring.

Results

We find that the average and highest affective predictive accu-
racies of the object recognition networks is far above the ceiling
of ‘shared taste’, and over halfway to the noise ceiling. We also
find that trained models are categorically more predictive than
untrained models and that average prediction scores increase
with model layer depth. Models trained with category super-
vision are as predictive of affect as models trained without.
Details are shown and described in Figure 1.

In the Taskonomy set, representations learned for object
and scene recognition are best for predicting affect. In all
affective categories of OASIS (arousal, valence, and beauty)

and the single affective category of the Vessel dataset (beauty),
object and scene recognition tasks are the top 2 of the 24 (+1)
Taskonomy task weights tested.

In the Vessel dataset, there are large differences in predictiv-
ity across image category, with Scenes and Landscapes being
more predictable categories, and Person and Art among the
least predictable categories.

Summary
Our work suggests that learning over natural image statistics
may be central to the ontology of visually-evoked affect. We
also go some way to disentangle the roles of task-related
representations, hierarchical structure, and model training in
predicting human affective responses with affectless perceptual
machines.
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& R. Garnett (Eds.), Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Asso-
ciates, Inc. Retrieved from http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high
-performance-deep-learning-library.pdf

https://github.com/facebookresearch/vissl
https://github.com/facebookresearch/vissl
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., . . . others (2021). Learning transferable visual
models from natural language supervision. In International
conference on machine learning (pp. 8748–8763).

Redies, C., Amirshahi, S. A., Koch, M., & Denzler, J. (2012).
Phog-derived aesthetic measures applied to color pho-
tographs of artworks, natural scenes and objects. In Com-
puter vision–eccv 2012. workshops and demonstrations:
Florence, italy, october 7-13, 2012, proceedings, part i 12
(pp. 522–531).

Redies, C., Hasenstein, J., & Denzler, J. (2007). Fractal-like
image statistics in visual art: similarity to natural scenes.
Spatial vision, 21.

Sax, A., Emi, B., Zamir, A. R., Guibas, L., Savarese, S., &
Malik, J. (2018). Mid-level visual representations improve
generalization and sample efficiency for learning visuomotor
policies. arXiv preprint arXiv:1812.11971.

Sax, A., Zhang, J. O., Emi, B., Zamir, A., Savarese, S., Guibas,
L., & Malik, J. (2019). Learning to navigate using mid-level
visual priors. arXiv preprint arXiv:1912.11121.

Sheng, K., Dong, W., Ma, C., Mei, X., Huang, F., & Hu, B.-G.
(2018). Attention-based multi-patch aggregation for image
aesthetic assessment. In Proceedings of the 26th acm inter-
national conference on multimedia (pp. 879–886).

Vessel, E. A., Maurer, N., Denker, A. H., & Starr, G. G. (2018).
Stronger shared taste for natural aesthetic domains than for
artifacts of human culture. Cognition, 179, 121–131.

Wightman, R. (2019). Pytorch image models. https://
github.com/rwightman/pytorch-image-models.
GitHub. doi: 10.5281/zenodo.4414861

Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J., &
Savarese, S. (2018). Taskonomy: Disentangling task transfer
learning. In Proceedings of the ieee conference on computer
vision and pattern recognition (pp. 3712–3722).

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Abstract
	Introduction
	Methods
	Results
	Summary

