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Abstract – Human visual processing is well predicted by 
deep neural networks (DNNs), yet what drives this 
predictive power is less understood. Interestingly, 
human visual cortices have recently been reported to 
represent objects in a texture-like fashion, akin to a 
texture bias commonly observed in DNNs. We 
hypothesized that this alignment of DNNs with human 
neural recordings is driven by DNNs’ ability to explain 
variance related to texture information in images. To test 
this, we recorded electroencephalography (EEG) signals 
from human participants (n=57) while they viewed three 
types of images: natural images, texture-synthesized, 
and object-only versions. Next, we compared these 
neural representations with features extracted from five 
different DNN architectures processing the same 
images. Our results show that features extracted from 
texture-synthesized images are just as predictive of  EEG 
responses as features extracted from original images 
themselves. Moreover, features extracted from texture-
synthesized images were most predictive of EEG 
responses for texture-synthesized images. Our results 
suggest that DNN’s ability to predict neural data derives 
from a shared bias for textures in the human visual 
cortex. 
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Introduction 

Deep neural networks (DNNs) have demonstrated high 
predictive performance of human brain responses. Prior 
studies have revealed a tendency in some DNNs to 
categorize images based on textures rather than shape 
(Geirhos et al. 2018; but see Ritter et al. 2017; Hermann 
et al. 2019). Interestingly, recent studies have also 
revealed texture-like representations of objects in the 
human visual cortex (Jagadeesh & Gardner, 2022; 
Henderson et al. 2019). Based on these findings, we 
hypothesized that DNNs’ ability to predict neural data 
stems from their ability to encode texture information. 
This study explores this texture bias by presenting 
participants with three types of images differentially 
emphasizing texture and object information: texture-
synthesized, object-only and original images. The 
texture-synthesized condition retained only texture 
information and removed object cues from the images. 
The object-only condition retained only the object and 
removed contextual texture information. The original 
condition serves as a control preserving the original 
balance of texture and object information. We posit that 
DNNs will exhibit the highest predictive performance 
with texture-synthesized images, as this condition 
aligns closest to both the DNNs’ inherent biases and the 
texture-like representations in human visual 
processing.  

Methods 

We recorded EEG signals from 57 human participants 
as they passively viewed images. The images were 
presented in a rapid serial visual presentation (RSVP; 
Potter & Fox, 2009) design, starting with a fixation cross 
of 100ms, followed by the stimuli presentation for 
100ms – this sequence alternates 120 times before 
participants were allowed a break. In total, participants 
were presented with a total of 12,000 stimuli – 200 
stimuli x 3 conditions x repeated 20 times. 

 

Figure 1: The first row shows original THINGS 
images and the second row their texture-synthesized 

counterparts. These images, together with objects-only 
images, were presented to humans and DNNs. 

Stimuli 

We used a subset of THINGS Image Dataset (Hebart et 
al. 2019). To vary the contribution of texture information, 
we created two additional image conditions – texture-
synthesized and object-only (Fig. 1). For the texture-
synthesized condition, we used a method from Gatys et 
al. (2015) which utilizes a pretrained VGG-19 to extract 
and replicate textural patterns from the original images. 
These textures were spatially confined to the receptive 
field of VGG-19’s first convolutional layer (conv1_1). 
For the object-only condition, we segmented the objects 
of interest using Background Remover (Nader, 2024), 
isolating them from their background to focus on the 
object rather than texture.  

DNNs 

We selected five DNN architectures commonly used in 
the computational modeling of visual processing – 
AlexNet, VGG-16, ResNet-18, ResNet-50 and ViT-b-16 



(Krizhevsky et al. 2012, Simonyan & Zisserman, 2014; 
He et al. 2016, Dosovitskiy et al. 2021). We initialized 
five different seeds for every model. 

Model comparisons 

To characterize visual processing in EEG recordings, 
we computed representational dissimilarity matrices 
(RDMs; Diedrichsen & Kriegeskorte, 2017) using 
cosine similarity of 22 posterior EEG electrodes. For 
DNN activations, we computed RDMs from activations 
for all convolutional, pooling and fully-connected layers.  

We used Ridge Regression to regress the EEG 
RDMs onto DNN RDMs. Using these estimated linear 
mappings, we predicted representations on a held-out 
dataset of 15 subjects and 100 stimuli. We then 
computed the correlations between the predicted 
representations with EEG RDMs. The prediction 
performance of different models was compared using 
pairwise comparisons (Kruskal-Wallis test) of the area 
under the curve (AUC) of the correlation time courses.  

Results 

 

 Figure 2: (A) Prediction performance of ResNet-50 
from -0.1s to 0.5s relative to stimuli onset. The model 

shows the highest representational correlation for EEG 
responses during the presentation of texture-

synthesized images. (B) AUC of prediction 
performance for different DNNs across all time points.  

Enhanced representational correlation 
between DNN and humans with texture-
synthesized images 

By isolating texture information and removing object 
cues from images,  we increased the representational 

correlation between DNNs and humans (Fig. 2A¹, 2B¹). 
This result is robust held for all DNNs, suggesting that 
DNN prediction of neural signals was indeed sensitive 
to the presence of texture information in neural signals. 
When human subjects viewed original images, features 
from original images performed only marginally better 
than features from texture-synthesized images (Fig. 
2A³, 2B³). This is remarkable because the texture-
synthesized images are devoid of semantic information 
(Fig. 1). We also performed a partial correlation to 
assess the unique variance attributed to each feature. 
Similarly, we saw an increased contribution of unique 
variance from texture features in EEG responses 
towards texture-synthesized images (Fig. 3A¹, 3B¹).  

 

Figure 3: (A) Partial correlations between EEG 
responses and ResNet-50’s features. When texture 

information is isolated (i.e., subjects viewing textures), 
texture features show an increase in unique variance. 

(B) AUC of partial correlations for different DNNs 
across all time points. All models showed a consistent 

increase in unique variance captured when texture 
information was isolated.  

Conclusion 

Our results demonstrate an increased alignment 
between neural processing and DNN features when 
isolating texture information from images. This 
suggests that the predictive power of DNN features for 
neural signals – as captured by EEG – is largely derived 
from a shared sensitivity for image texture.  
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