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Abstract
Humans are remarkably adaptive instructors who adjust
advice based on their estimations about a learner’s prior
knowledge and current goals. Many topics that people
teach, like goal-directed behaviors, causal systems, cat-
egorization, and time-series patterns, have an underlying
commonality: they map inputs to outputs through an un-
known function. This project builds upon a Gaussian pro-
cess (GP) regression model that describes learner behav-
ior as they search the hypothesis space of possible un-
derlying functions to find the one that best fits their cur-
rent data. We extend this work by implementing a teacher
model that reasons about a learner’s GP regression in
order to provide specific information that will help them
form an accurate estimation of the function.
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Introduction
Learners recognize when they are in a pedagogical scenario
and are able to infer more information as a result, even
when given very little data (Shafto, Goodman, & Griffiths,
2014). Teachers also rely on this situational understand-
ing when choosing advice, tailoring their choices to assist
a learner’s beliefs and goals (Rafferty, Brunskill, Griffiths, &
Shafto, 2011; Rafferty, LaMar, & Griffiths, 2015), even from a
young age (see natural pedagogy, Gweon (2021)). However,
the majority of previous task paradigms examine pedagogy
in small and discrete domains, like categorization or feature-
learning (Bridgers, Jara-Ettinger, & Gweon, 2020; Sumers,
Ho, Hawkins, Narasimhan, & Griffiths, 2021). Other work,
which models teacher choices in more complex tasks like
algebra teaching (Rafferty et al., 2011), only allow teach-
ers to choose from a small pool of discrete actions. This
project posits an extension to a Gaussian process regression
model that allows examination of pedagogical reasoning in
continuous and open-ended task domains. Function learn-
ing research characterizes how people narrow down the the-
oretically infinite space of function hypotheses to more inter-
pretable representations. Function learning has been mod-
eled as a Gaussian process regression, and compositional
biases describe human patterns of function hypothesis gener-
ation and learning (Lucas, Griffiths, Williams, & Kalish, 2015;
Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gershman,
2017). But, this body of research has not examined the role of
pedagogy in guiding learner hypothesis generation.

Model
We took inspiration from a visual function completion task in
which human participants observed an image with a few dots
placed along a domain (Schulz et al., 2017). Participants drew
a line that represented the function which they believed had
produced those dots. We modeled an artificial learner agent
that estimates the underlying function given a set of points and
an artificial teacher agent that generates a useful set of points
that a learner will observe.

Function Learning & Teaching

Function learning can be formalized as a Bayesian infer-
ence problem, in which a learner updates a belief distribu-
tion about a continuous function f conditioned on data points
D ∈ {(x1,y1), . . . ,(xn,yn)}.

PL( f |D) ∝ P(D| f )P( f )

In this example, we assume teachers are trying to teach a
target function f ∗ and are tasked with giving a set of n ex-
ample points D′ = {(x′1,y′1), ...,(x′n,y′n)} that help the learner
learn the function for some target inputs x∗ ∈ Rm. The
teacher’s utility function is based on how similar the learner’s
inferred function is to the true function at the target inputs.
Given a function f , a target function f ∗, and target inputs
x∗, the teacher’s function-wise utility is based on the mean-
squared error (MSE):

UT ( f ; f ∗,x∗) = exp(−MSE( f ∗(x∗), f (x∗)))

Then, the expected utility for teaching the points D′, given
target function f ∗ and target inputs x∗ is:

UT (D′; f ∗,x∗) = EPL( f |D′)[UT ( f ; f ∗,x∗)]

Gaussian Processes

A Gaussian process (GP) defines a distribution over functions,
parameterized by a mean function µ, which specifies the ex-
pected output function, and kernel function k which specifies
the covariance of outputs. We model learners performing
Bayesian updates on a GP as they gather more data in a
process called Gaussian process regression. Let f : X → R
be a function drawn from a GP . We chose the periodic ker-
nel function for k, a standard option for capturing functions
that repeat themselves, with parameters p (periodicity) and ℓ
(within-period smoothness).

f ∼ GP (µ,k) k(xi,xj) = σ
2

(
−

2sin2(π|xi,xj|)/p
ℓ2

)

Simulated Teaching Strategies
A teacher model is specified by how it generates and as-
sesses candidate points to give to the learner. Each of the
following teacher models knew the underlying f ∗ and a set of
points which the learner already observed D.

Random Sampling The teacher selects n coordinates uni-
formly at random to build D′. Random point selection can lead
to successful teaching, but not reliably, since it could select a
redundant point that falls too close to something the learner
already knows.

Maximizing Spread Over Domain The teacher calculates
the length of the intervals between known xi ∈ D along
the specified domain x∗. They select the interval [xa,xb]
with max |xb− xa|, calculate the xmidpt = a + b−a

2 and add



Figure 1: We selected one example of a sinusoidal target function (dotted line) and learners’ already-observed points (black
dots) to capture the results of three teacher strategies. Teacher choices for subsequent points are shown as red dots. The
learner’s resulting GP is represented by a mean function µ (blue line) and the 95% confidence interval (blue shading) given the
kernel function k. The approximated expected utilities E(UT ) quantify the probability that each teaching policy chooses points
that induce the right function f ∗ given a random instantiation of D. Note that because we specified just one f ∗ and kernel k for
a demonstrative example, E(UT ) does not necessarily generalize to other functions or reflect human choices.

(xmidpt,ymidpt) to D′. This is repeated n times, with each itera-
tion updating D← D′. Selecting points that maximize spread
across the domain can prevent redundant points. But, when
very few points can be taught, it could fail to capture impor-
tant parts of the function where there are rapid, patterned, or
unintuitive changes.

Minimizing Uncertainty Over Range The teacher performs
approximate inference on the learner’s representation of the
function distribution. After simulating the learner’s GP , the
teacher determines the xuncert ∈ x∗ with the highest standard
deviation and adds its coordinate (xuncert,yuncert) to D′. This
is repeated n times, with each iteration updating D← D′. In-
ferring areas where learners are most uncertain and selecting
points to clarify is a reasonable pedagogical approach. But,
there is a possibility that the selected points may neglect one
section of the function (e.g., Figure 1c where µ is accurate but
still has high uncertainty on most of the left side of the graph).

Maximizing Utility of D′ The teacher performs approximate
inference on the learner’s representation of the function distri-
bution. After simulating the learner’s GP , the teacher samples
multiple candidate points and determines the xutil ∈ x∗ with the
highest utility and adds its coordinate (xutil,yutil) to D′. This is
repeated n times, with each iteration updating D← D′. Be-
cause the utility function is built in to this teacher, we expect
that, given enough candidate samples to select from, it should
be the optimal strategy, and we saw that its utility was sig-
nificantly higher than random (p = 0.02) and domain spread
(p = 0.01) strategies. Qualitatively, this was the only strategy
which caused µ to realize the full amplitude of the function on
the right side of the domain (Figure 1d).

Discussion
Gaussian processes can model how people generate informa-
tive teaching examples that support learning with little data,
even in continuous spaces. We modeled strategies for teach-
ers to generate points for learners, two of which used infor-
mation about a learner’s GP to make pedagogical choices. In
future work, we plan on simulating teachers that, rather than
assuming the learner’s kernel, will instead infer the learner’s
kernel. This could give rise to new teaching strategies where
teachers are sensitive to the learner’s distribution over kernels.
For instance, we would expect that teachers select points that
correct the learner’s GP away from a mistaken prior. We will
collect human data for the function teaching task and perform
model fitting and comparison to examine which strategies best
capture participants’ pedagogical choices. We will consider
additional tractable alternative teaching heuristics, like priori-
tizing local minima and maxima coordinates. Perhaps a sin-
gle heuristic is sufficient to capture human choices, but peo-
ple could flexibly employ many heuristics that approximate in-
ference of a learner’s GP and inference of optimal points to
teach. Further work could go beyond visualized functions, to
understand how we teach functions that describe the behavior
of complex causal variables. This task only considers teaching
through giving example points, but mapping language inputs
to some underlying strategies could broaden the scope of our
model, since describing abstract underlying rules can some-
times be more clear than demonstrative examples (Sumers,
Ho, Hawkins, & Griffiths, 2023). Ultimately, we hope that this
paradigm can provide insight into computationally tractable
methods for teaching and reasoning about complex, contin-
uous domains.
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