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Abstract
Early hierarchical models of the visual cortex, such as
HMAX (Serre et al., 2007; Riesenhuber & Poggio, 2002),
have now been superseded by modern deep neural net-
works. Modern deep neural networks optimized for im-
age categorization have been shown to outperform HMAX
(and related models) significantly on image categoriza-
tion tasks and to fit better neural data from the visual
cortex, even though they were not explicitly constrained
by neuroscience data. However, earlier hierarchical mod-
els were also trained with simpler local learning rules in
the pre-deep learning era. So far, these models have yet
to be updated with modern gradient-based training meth-
ods. Here, we describe a novel contrastive learning al-
gorithm to train HMAX (CHMAX) to learn scale-invariant
object representations. Unlike standard deep neural net-
works trained with data augmentation methods, we show
that CHMAX learns visual representations that general-
ize to novel objects at levels of generalizations compara-
ble to human observers. We hope our results will help
spur some renewed interest in other classic biologically-
inspired vision models.
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Introduction
Modern deep neural networks (DNNs) currently hold the state
of the art on image classification tasks (Simonyan & Zisser-
man, 2014). This has been possible due to the development
of training techniques that allow these models to learn from
large scale datasets directly via gradient descent (Deng et al.,
2009; Schuhmann et al., 2022). However, despite their ad-
vanced capabilities, DNNs have not substantially deepened
our understanding of cortical processes and their alignment
with primate vision remains imperfect (Bowers et al., 2022;
Fel* et al., 2022; Linsley et al., 2023). Before the rise of deep
learning, models such as HMAX were designed with a focus
on anatomical accuracy, attempting to mimic the hierarchical
organization of the visual cortex. These models, governed
by simpler, local learning rules, were adept at forming sta-
ble representations with a limited scope of variation (Serre et
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al., 2007; Riesenhuber & Poggio, 2002; Mutch & Lowe, 2006).
They were, however, not trained with methods that could scale
to the complexities handled by modern DNNs.

DNNs often employ extensive data augmentation to sim-
ulate scale invariance, that generally fail to achieve genuine
invariance, as their learning is restricted to the variations
present within the training data (Biscione & Bowers, 2022).
This is a significant shortfall, as the biological visual system
reliably recognizes objects across a broad spectrum of scales,
a capability attributed to true scale invariance (Biederman &
Cooper, 1992; Han et al., 2020; Logothetis et al., 1995).

In this context, we revisit the HMAX model and propose the
CHMAX. This new model maintain the anatomical hierachy
of the original but is augmented with trainable filters as well
as trained with a loss inspired in the latest development in
self supervised learning Chen et al. (2020). Unlike standard
DNNs, CHMAX learns visual representations that generalize
to novel objects with a level of generalization comparable to
human observers, as demonstrated in our experiments.

An HMAX in the deep learning era
In the bypass route of the HMAX, the simple (S) layers were
composed of Gabor filters at 16 different sizes (also referred
as scale bands, S17, S19...S1k) with 4 orientations each. They
are followed by a set of complex units (C) that apply spatial
pooling and max pooling across adjacent scale bands (e.g.
max(spatial pool((S1k,S1k+1)). We start by replacing these
Gabor filters with trainable filters. We then adopt a pooling
layer that uses adaptive strides to return an invariant feature
map regardless of the scale of the input.

In Gaussian scale theory, scaling an image is analogous to
scaling the filters (Jansson & Lindeberg, 2022; Mutch & Lowe,
2006). In order to optimize the memory footprint of the model,
we used an image pyramid with rescaled versions of the im-
age. The C1 layer computes a max spatial pooling that ensure
that the feature map is coherent at different sizes and then a
max pool over neighboring scales. A new set of convolutional
kernels (S2b) further processes the information, followed by
another pooling layer (C2b) where a max operation is used
again between two adjacent scale bands to select the scale
band that will be seen by the classification layer.

In order to mantain the invariance of the model when
presented with multiple scales, we use contrastive learning



Figure 1: Top Left: Performance of ResNet50 and VGG16
models when trained on a limited subset (shown in paren-
theses) of the MNIST scale dataset and evaluated across all
scales at inference time. Top Right: Performance of CNNs
trained with data augmentation compared to HMAX models
trained without augmentation. Bottom: Demonstration of the
scale bands selected by the model vs. the scale of the input.

(Chopra et al., 2005) to force identical outputs from the final
pooling stage for both the reference scale and the image pyra-
mid presented to the model. We calculate the Mean Absolute
Error between the C2b outputs of the two input scale to use
as a penalty to regularize the classification loss.

Scale-Selection

In our comparative study on the MNIST dataset, we compare
the accuracy of the proposed CHMAX architectures against
VGG-16 (Simonyan & Zisserman, 2015) and ResNet50 (He et
al., 2016). We train three distinct versions of both the VGG-16
and ResNet50 models: one trained solely on MNIST images
of Scale 2 (center scale), one trained on scales 1-4 (limited
scale range), and one trained on scale 0.5-8 (full scale range).
Through these models, we aim to determine the degree to
which data augmentation alone can facilitate the achievement
of scale invariance in deep learning models. We also consider
the Eccentricity-dependent Neural Networks (ENN) proposed
by (Zhang et al., 2019) as a model of the primate visual cortex
trained on scales 1.414 to 2.838.

As reflected in Figure 1B, the Original HMAX and CHMAX
models are able to exhibit generalization to unseen scales
during training. Furthermore, the results also demonstrate
how the implementation of constrained augmentation can en-
hance the pre-existing scale invariance facilitated by these in-
nate mechanisms. The ENN shows a modest degree of scale
invariance but with a pronounced bias towards larger scales
and diminished performance for smaller scales. Specifically,
the HMAX architectures exhibit a more equitable response

across the scale spectrum as seen in Figure 1C, underlining
the efficient scale selection during global max pooling across
scales.

The ResNet50 and VGG-16 in 1B, having been trained
across the complete scale spectrum, perform commendably
on the scale invariance task. However, as Figure 1A re-
veals, they cannot generalize to unseen scales. This suggests
that models relying solely on data augmentation for achiev-
ing scale invariance are learning a separate representation for
each object at a different scale. This limitation is starkly evi-
dent in the performance of the ResNet50 and VGG-16 models
trained on scales 1 to 4, which perform well within this range
but suffer a significant performance drop for unseen scales.

Figure 2: Top Left: Experiment conditions demonstrating the
target/distractor pair. Top Right: Performance of models on
one-shot learning task, including Non-Korean human perfor-
mance from Han et al. (2020) for comparison.

One-Shot Learning Performance on Hangul Dataset To
demonstrate the generalizability of the HMAX to out of distri-
bution examples, we utilize a zero-shot Korean letters discrim-
ination task presented in Han et al. (Han et al., 2020).

In the Hangul dataset used in these experiments, there are
27 target/distractor pairs of visually similar characters. Accu-
racy is determined by correctly deciding if the test character
is the same as the target. To test scale invariance, the letters
were presented in 5 conditions: target character presented
at 30’ of visual angle, and test character presented at 2◦ of
visual angle; 2◦(target)/30’(test); 30’/5◦; 5◦/30’; 30’/30’. The
non-Korean human results are included in 2B.

For evaluating the models, we defined a hyperparameter of
26 pixels= 1◦ of visual angle in order to analogize the model
performance to human performance. We compared the fea-
tures of two Korean letters from the same pair, and classified
them as the same or different based on the Pearson correla-
tion of the features extracted from the penultimate layer of the
model. Two Korean letters are considered to have the same
identity if their associated features have a Pearson correlation
higher than a threshold. We evaluated the accuracy on the tar-
get/target and target/distractor pairs to evaluate the selectivity
of the models as well as the scale invariance.

As shown in figure 2B, the CHMAX model demonstrates
superior performance on the one-shot learning task. Although
the ResNet50 and VGG-16 models were trained to be scale
invariant utilizing extensive data augmentation, their perfor-



mance still falls short. This observation underscores the lim-
itation of such architectures that solely depend on data aug-
mentation for achieving scale invariance.

Conclusions
In this work we have demonstrated the ability of the CHMAX
model to generalize to unseen scales in the multi-scale MNIST
dataset. We also showed that this scale invariance can be
exhibited in completely novel data such as the korean task,
mirroring human performance. In contrasts models trained
with data augmentation are able to exhibit scale invariance
over the multi-scale MNIST but no in the human task.
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