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          Abstract
Humans manage multiple conflicting sources of 
information. However, models of cognitive control 
assume one source of interference and do not explain 
how we handle multiple distractors. In our multi-
dimensional task-set interference paradigm, individuals 
manage distraction from three independent dimensions. 
Experiment 1 suggests that people use prior conflict 
from each dimension to selectively modulate their gain. 
A neural network, measuring multivariate conflict as 
energy within each dimension’s pathway, captures this 
effect. Representational similarity analyses of human 
EEG (Experiment 2) confirmed the selective suppression 
of distractor representations. These results reveal the 
striking human ability to simultaneously adjust attention 
to multiple sources of information. Model predictions 
converge with recent work suggesting that neural 
conflict signals emerge from the integration of diverse 
task variables in medial prefrontal cortex. 
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Introduction 
The flexible adjustment of attention as a function of past 
interference is a hallmark feature of cognitive control. 
Computational models successfully capture such 
dynamics when people face one source of distraction 
(Alexander, 2022; Botvinick et al., 2001; Verguts & 
Notebaert, 2008), but it remains unclear how they 
orchestrate attention over multiple information streams. 
Here, we approach this question with a novel multi-
dimensional task-set interference (MULTI) paradigm, in 
which participants need to manage three simultaneous 
distractors. We first show that people adjust to 
multidimensional conflict by modulating attention in a 
distractor-specific way. Next, we report a neural 
network model that explains this effect through 
distractor-specific conflict adaptation, with multivariate 
conflict measured as Hopfield energy in each 
perceptual pathway. Finally, an EEG study using 
representational similarity analyses (RSA) shows 
evidence consistent with dimension-specific attention 
modulation when distractors carry predictable levels of 
conflict. 

Experiment 1 
In the MULTI task, participants have to attend to one of 
four task dimensions, indicated by a letter cue, with the 
remaining dimensions acting as distractors (Fig. 1A). 
For each cued dimension, participants have to find a 
target feature that is present in one of two stimuli. 
Target features are randomly chosen at the start of the 
experiment (Figure 1A; in the example, blue color, oval 
shape, dashed edge, downward motion). The cued task 
dimension switches over trials in pseudo-randomized 
sequences, rendering each dimension periodically 

relevant. From this design, it follows that task-set 
interference parametrically varies over a discrete 
congruency scale from 0 to 3. By analyzing how prior 
congruency in one dimension affects susceptibility to a 
current non-cued dimension, we can test whether  
conflict adaptation generalizes across dimensions, or 
only adjusts within-dimension attention. 

Behavioral and modeling results 
Data from Experiment 1 (N=104) showed that distractor 
dimensions produce interference simultaneously, and 
that humans parametrically configure attentional control 
based on prior congruency levels. Specifically, people 
became less susceptible to distractors after low-
congruency trials (i.e., high conflict; Botvinick et al., 
2001), a phenomenon known as the congruency 
sequence effect (CSE; (Gratton et al., 1992). Critically, 
we observed dimension-specific CSEs (Figure 1B). 
When comparing each within-dimension adaptation 
effect to an average across-dimension adaptation 
effect, we observed strong evidence for larger within-
dimension compared to across-dimension adaptation 
effects (BFs ≥ 217). We also found some evidence 
against across-dimension adaptation (range BFs = 2 - 
9). This result, replicated in several experiments 
(Gheza & Kool, 2023), suggests that conflict from a 
given dimension only affects its own processing. 

A neural network model of our task (Fig. 1C), based 
on prior models of classic interference paradigms 

Figure 1. (A) Trial sequence of the MULTI task. (B) 
Dimension-specific adaptation. (C) Neural network 
architecture (top), and distractor-specific adaptation 
mechanism (bottom). (D) Simulation results. 
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(Cohen et al., 1990; Ritz & Shenhav, 2022), captures 
this effect. The model processes stimulus information 
through four feed-forward pathways, biased by 
individual task nodes. In classic models, conflict is 
monitored at the response level, where all stimulus 
features are compressed into two values (e.g., 
Botvinick et al. 2001). This is incompatible with our 
results, because conflict adaptation tracks the source of 
conflict. Instead, we found that dimension-specific 
CSEs were only captured when including as many 
conflict monitoring units as distractors (Fig. 1D).  

This model measures conflict as Hopfield energy, the 
coactivation of dimension-specific intermediate units 
and response units, weighted by their connections: 
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The pathway energy then determines how much control 
is applied to the corresponding task unit, so that conflict 
from a given dimension results in its suppression:  
𝑐𝑜𝑛𝑡𝑟𝑜𝑙',!() = 𝜆 ⋅ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙',! + (1 − 𝜆)(𝛼 ⋅ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡',! + 𝛽) 
This modeling work confirms that conflict adaptation 

requires independent, parallel, conflict-control loops. 
Thus, we predicted that neural representations of 
distractors, and not cued dimensions, would shift as 
function of previous interference (Ebitz et al., 2020).  

Experiment 2 
In a follow-up EEG version of the MULTI task, we 
introduced a task-specific proportion congruency (PC) 
manipulation (Bugg & Crump, 2012), with stable 
relationships between cued task and experienced 
conflict. At each point on time, one task was mostly 
incongruent (MI; 25% probability that any distractor is 
congruent), one mostly congruent (MC; 75%), and the 
other two unbiased (Neu; 50%). To access the content 
of neural representations, we decoded information 
about dimensions’ representations in a time-resolved 
manner from the EEG signal (N=26) using trial-level 
RSA (Kikumoto & Mayr, 2020). First, we obtained 
information about the similarity of multivariate neural 
signals by decoding each combination of the four cues 
and the locations of their instructed features (left or 
right), for each time point within each trial. Second, we 
performed RSAs using the resulting classification 
profiles as a measure of class similarity. These profiles 
were simultaneously regressed onto three model 
vectors, corresponding to representations of the 
dimension’s rule (i.e., cue), side of the instructed feature 
(i.e., spatial attention), and their conjunction (i.e., 
feature identity). By using model vectors corresponding 
to either the cued or each non-cued dimension, we 
could disentangle dimension-specific representations 
and measures attention to both target and distractors 
as it unfolds over time. 

Results 
Reaction time and accuracy data revealed that humans 
adapted to PC effects (Figure 2A). For mostly 
incongruent tasks, the congruency effect was 
weakened (shallower slopes), reflecting less 
susceptibility to non-cued dimensions. When tasks had 
mostly congruent distractors, congruency effects were 
larger (steeper slopes). RSA confirmed our predictions. 
The control adaptation elicited by the PC manipulation 
did not significantly affect representations of the cued 
dimension (Figure 2B). However, the identity of non-
cued features emerged in the response window (2C, SR 
conjunction), compatibly with slips of attention towards 
distractors. Crucially, this effect was absent for MI 
blocks, suggesting that narrower attentional control 
prevented such slips. Additional support for distractor-
based adaptation came from correlations between the 
effect sizes of non-cued rule suppression and of 
congruency effects (2D), suggesting that if participants 
were more likely to represent a wrong rule, the more 
they were susceptible to interference. 

 
Figure 2. (A) Effect of PC on behavior. (B) 
Representation of the cued dimension. (C) Averaged 
representations of the three non-cued dimensions. Bars 
indicate significant clusters. (D) Brain-behavior 
correlations. 

Conclusion 
Our work shows humans adapt control in a distractor-
specific way. How can this be implemented neurally? 
Mixed-selective neuronal populations (Fu et al., 2022; 
Fusi et al., 2016) may encode multivariate conflict 
representations and overcome conflict “locally” by 
orthogonalizing interfering dimensions. 
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