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Abstract
We used a reversal learning task with probabilistic re-
ward to investigate how a neural network accumulates
evidence across multiple trials to reverse its decision.
We analyzed prefrontal cortex activity in monkeys per-
forming the task and recurrent neural networks trained
to learn the behavioral strategies of monkeys. We found
substantial neural dynamics across the time span of a
trial in the subspace that encodes reversal probability.
This suggested that the standard attractor model for ev-
idence accumulation, in which network states do not de-
viate strongly from attractor states, does not explain the
observed neural activity. We found that reward outcomes
affected the entire reversal probability trajectories sys-
tematically. The reversal probability trajectories across
trials had temporally stable ordering, and the reversal trial
was decodable over a wide time span. These findings
show that, when performing a task that requires interven-
ing behavior, reversal probability activity across trials is
encoded in dynamic neural trajectories, allowing tempo-
rally flexible representation of decision-related evidence.

Introduction
Reversal learning has been used for assessing the ability to
adapt one’s behavior in a dynamically changing environment
(Costa, Tran, Turchi, & Averbeck, 2015; Groman et al., 2019;
Bartolo & Averbeck, 2020). In these tasks, there is uncer-
tainty in when to reverse one’s choice, as reward is received
stochastically even when the less favorable option is chosen.
Therefore, it is essential that reward outcomes are integrated
over multiple trials before the decision reversal.

In this study, we investigated the neural dynamics that un-
derlie multi-trial evidence accumulation in the reversal learn-
ing task. We found that intervening behavior during a trial pro-
duced substantial non-stationary neural activity. This made
the attractor dynamics (Wong & Wang, 2006; Mante, Sussillo,
Shenoy, & Newsome, 2013; Luo et al., 2023), which is a stan-
dard neural model for evidence accumulation and require the
network state to remain close to attractor states, ill-suited for
explaining the neural activity associated with evidence accu-
mulation in reversal learning.

Here, we developed a neural network model that learns the
behavioral strategies of monkeys (Costa et al., 2015; Bartolo
& Averbeck, 2020) and found that a family of graded neural tra-
jectories that evolve dynamically in time encodes the reversal
probability in the trained network and prefrontal cortex. These
findings suggest that, in tasks that require executing interven-

ing behavior, evidence across multiple trials is accumulated in
the form of dynamic trajectories that allow for temporally flexi-
ble representation.

Methods

Reversal learning task

Each block consisted of T = 24 trials during network training.
The reversal trial r was sampled randomly and uniformly from
10 trials around the midtrial r ∈ Uni f [Tm − 5,Tm + 5],Tm =
T/2. To model the reversal of stochastic rewards, two targets
were generated at each trial k with probability Pr(trg = 0) =
qk and Pr(trg = 1) = 1− qk with qk = p before the reversal
(k < r) and qk = 1− p after the reversal (k ≥ r). Network’s
choice was compared to the target, and one of four types of
feedback inputs, based on the (choice, matched)-pair, was
provided to the network: (0, not matched), (0, matched), (1,
not matched) and (1, matched) (Fig.1A).

Bayesian inference model

Ideal observer model The ideal observer model infers the
experimentally scheduled reversal trial and assumes that (a)
target probability is known, and (b) it switches at a scheduled
reversal trial.

The data available to the ideal observer are the choice yk ∈
{0,1} and the reward outcome zk ∈ {0,1} at all the trials k ∈
[1,T ]. Then, the posterior distribution of scheduled reversal
at trials k ∈ [1,T ] can be inferred from Bayes’ rule p(r|y,z) =
p(y,z|r)p(r)/p(y,z), where the likelihood function fIO(r) =
p(y1:t ,z1:t |r) is defined by fIO(r) = ∏

t
k=1 qk. Here, qk = p

if (yk,zk) = (0,1); qk = 1− p if (0,0); qk = 1− p if (1,1);
qk = 1− p if (1,0) before the reversal, i.e., k < r. After the
reversal, i.e., k ≥ r, the reward schedule is switched.

Behavioral model To infer the trial at which the preferred
choice switches, i.e., behavior reversal, we applied the same
framework as the ideal observer, but used a likelihood function
that assumes a switch only in the preferred choice probability
but not in the reward schedule.

Recurrent neural networks

Initial network The initial network was a recurrent neural
network with purely inhibitory synaptic connections with a
baseline external input to sustain the network activity. Such
inhibitory network operated in a balanced regime where the
recurrent inhibitory inputs were balanced with the external ex-
citatory inputs (van Vreeswijk & Sompolinsky, 1996).



Training scheme To learn the behavioral strategies of mon-
key, we trained the network to learn from outputs of the ideal
observer. The network was first simulated and then its choices
and reward outcomes were fed into the ideal observer to infer
the scheduled reversal trial. Then, the network was trained to
switch its preferred choice a few trials after the inferred rever-
sal trial. This delay in the behavior reversal was observed in
monkey reversal behavior (Bartolo & Averbeck, 2020; Costa
et al., 2015). As the scheduled reversal trial varied across
blocks, the network learned to reverse its choice in a block-
dependent manner.
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Figure 1: Recurrent neural network trained on ideal observer

Results
Here we show that RNNs trained on the ideal observer show
behavior outputs (Fig.1) and neural activity (Fig.2) similar to
monkeys performing the same task. We found that substantial
temporal dynamics are produced in the neural subspace that
encode evidence, i.e., reversal probability, and their changes
are driven by reward outcomes (Fig.2). Also, perturbation ex-
periments show that the reversal probability activity may sys-
tematically change choice activity, suggesting causal link be-
tween the two variables.

Trained network behavior

After training, RNNs were resistant to a few no-reward feed-
back trials but abruptly switched its choice (magenta to blue)
when consecutive no-reward feedback was received (Fig.1B).
Dark (light) magenta shows no-reward (reward) trials when
option A is chosen. Similarly, dark (light) blue shows reward
outcomes when option B is chosen. Such abrupt switch in
choice was consistent with monkey’s behavior (Fig.1C).

Reward shapes the reversal probability activity

Next, we analyzed the neural activity of PFC neurons and
trained RNNs. In particular, we performed targeted dimen-
sionality reduction (Mante et al., 2013) to identify neural sub-
space that encode choice and reversal probability activity. We

found that substantial temporal dynamics were observed in
the two-dimensional subspace (xchoice, xreverse), and the neu-
ral trajectories shifted systematically across trials (Fig2A).

We asked if changes in reversal probability activity was
driven by reward outcomes. To investigate, we set up an in-
tegration equation xreverse(k+1) = xreverse(k)+R±(k), where
R±(k) is estimated based on reward (+) or no-reward (−) in
trial k, and were able to predict the reversal probability activity
at cue offset in upcoming trials (Fig.2B, right).

Given the substantial neural dynamics in this subspace over
time within a trial, we inquired if the reward outcomes could
shape the entire neural trajectory. We found that, when re-
ward was received, the xreverse(t) trajectory was shifted up-
ward across the time span of a trial. On the other hand, no-
reward led to a downward shift in the xreverse trajectory (Fig2C,
left). Moreover, consecutive no-reward (reward) outcomes in-
creased (decreased) the ramping rate of xreverse towards cue
offset (Fig2C, right).

These findings suggest that evidence for reversing a deci-
sion, i.e., reversal probability, is not encoded in static station-
ary states, but in dynamic trajectories that evolve in time and
shift across trials. Furthermore, we analyzed the ordering of
xreverse trajectories across trials at each time point and found
their ordering is stable in time, suggesting temporally stable
representation of the dynamic trajectories (Fig.2D).
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Figure 2: Neural activity of prefrontal cortex of monkey

Perturbing reversal probability activity
To test if reversal probability activity is causally linked to choice
outcomes, we perturbed the neural activity of trained RNNs
along the direction encoding reversal probability (v+), against
it (v−) and randomly (vc). We found that, when reversal prob-
ability activity is decreased (increased), the reversal trial was
delayed (accelerated), suggesting perturbing reversal proba-
bility activity can systematically affect the choice outcomes.
Although, perturbation experiment was not performed in mon-
key PFC, we analyzed the residual activity of xreverse and



xchoice around their block-averaged activity, consdering them
as “natural” perturbation, and found that they were negatively
correlated, consistently with RNN results.
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