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Guillaume Lajoie
Mila - Quebec AI Institute, Montréal
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Abstract
Videogames represent a promising experimental
paradigm for neuroscientists to study active tasks
in complex environments. However, interpreting brain
dynamics in such complex environments is challenging,
though a recent approach is to use brain encoding, i.e.
quantify the similarities in activity between the brain and
an artificial neural network. A wide range of modelling
approaches could potentially be used to encode brain
activity in videogames. In this work we compare three
machine learning models trained with different objective
functions to encode fMRI data collected on 5 subjects
playing Super Mario Bros: (1) PPO was trained with
reinforcement learning to play the game from video
frames; (2) VideoGPT was trained through predictive
coding on videos of human gameplay; (3) ResNet was
trained for image classification in a diverse set of natural
images. All three models produced qualitatively similar
brain encoding maps on the levels used for training,
though overall ResNet had better brain encoding accu-
racy and generalised better to new levels. As VideoGPT
and PPO were trained from scratch on videogame data,
they demonstrate the feasibility of future experiments to
explain brain activity during videogames while carefully
controlling the nature and size of data used for training.
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Introduction
Videogames offer a promising experimental framework to
study cognitive processes, by strongly engaging participant’s
attention, emotions, as well as motor and decision making
abilities (Anderson et al., 2011; Bavelier, Achtman, Mani, &
Föcker, 2012). Brain encoding has emerged as a powerful
method to study brain representations evoked by rich environ-
ment such as videogames, by quantifying the similarities be-
tween the representations of the brain and artificial neural net-
works. Brain encoding has been widely studied in vision and
language tasks (Schrimpf et al., 2020; Oota, Arora, Rowtula,
Gupta, & Bapi, 2022; Conwell, Prince, Kay, Alvarez, & Konkle,
2023). By contrast, very few works have used brain encoding
techniques in the context of videogames (Cross, Cockburn,
Yue, & O’Doherty, 2021; Kemtur et al., 2023). We aim to as-
sess the performance of three different approaches to train a
brain encoding model on a fMRI videogame task using the un-
precedented CNeuromod dataset (Boyle et al., 2020). These
approaches correspond to markedly different choices of ob-
jective functions, i.e. what is optimized by the model during
training.

The first approach, reinforcement learning (RL), consists of
training a model to play a videogame while maximizing a re-
ward (Cross et al., 2021). The second, “predictive coding”
employs an unsupervised generative model trained to gener-
ate the continuation of a given input clip of human gameplay.
The third, “classification”, consists of a vision model trained

to perform classification of a diverse collection of natural still
images into many categories. We selected a specific imple-
mentation for each objective function, and compared their abil-
ity to encode brain activity across different levels of the game
”Super Mario Bros” (SMB).

Methods

Dataset

We used the Mario dataset of the Courtois NeuroMod data-
bank (Boyle et al., 2020). The dataset (n=5) comprises of
about 10h of fMRI data per subject, while they played SMB.
FMRI data were acquired on a 3T Siemens Prisma Fit scanner
(TR=1.49s, 2mm isotropic), preprocessed using the fMRIprep
pipeline (Esteban et al., 2019), and projected onto MIST at-
las, at the 1097 parcels scale (Urchs et al., 2019). We left out
data from 2 of the 22 SMB levels available in the dataset, to
evaluate generalisation to new levels and used the remaining
20 to fit the brain encoding regressions.

Models

Reinforcement learning: PPO The PPO model is a con-
volutional neural network (CNN) trained to play the game
by maximising a reward with the Proximal Policy Optimisa-
tion algorithm directly from pixel-level video frames of the
game(Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017).
The same model is trained to play on all the 20 training levels.
It was trained for about 380h of in-game time (∼ 20 million
images).

Predictive coding: VideoGPT The VideoGPT architecture
(Yan, Zhang, Abbeel, & Srinivas, 2021) directly processes the
video stream of subjects’ gameplay, using a short video as
input (16 frames at 12 Hz, 1.33 sec). VideoGPT has two
modules: a VQ-VAE which compresses the input video in a
discrete latent space and a GPT-like transformer, which pre-
dicts the VQ-VAE embeddings of the next video, given the VQ-
VAE embeddings of the current video. A single VQ-VAE was
trained on the pooled data of all subjects and all 22 levels, but
we trained a separate transformer for each subject, using one
80%/10% random split of gameplay video across the 20 lev-
els for training/validation per subject (∼ 400,000 images, 9h
of in-game time).

Classification: ResNet ResNet is the pretrained
resnet152v2 model (He, Zhang, Ren, & Sun, 2016). It
is a CNN with residual connections, trained on a classification
task on the ImageNet1K dataset (1.28 million images, 1,000
categories). At the time of writing it is ranked 10th on the
BrainScore vision leaderboard (Schrimpf et al., 2020).

Brain encoding

We trained a brain encoding linear readout for each model and
subject separately, using scikit-learn (Pedregosa et al., 2011).
A 80/10/10 % split of each subjects’ data from the 20 levels
was used for training, validation and test respectively for all
models, with random splits stratified by level identical to the



VideoGPT training. For each model, each layer, and the data
of each subject, we extracted the activations for input frames
of the 20 levels corresponding to 4.5s, 6s and 7.5s delays be-
fore each bold volume. These activations were averaged over
time steps, and a PCA was applied to keep 1,000 principle
components. The PCA ensured that latent spaces of identical
dimensionality were used across models. A ridge regression
was fitted and the validation score was used to select the op-
timal layer and regularisation parameter. For each brain par-
cel, the test and generalization scores are the R2 regression
scores (averaged across subjects), in the test set and the 2
left-out levels, respectively.

Results
For all models, the best layer for brain encoding was among
the last layers, responsible for decoding latent variables. On
average ResNet had the highest brain encoding R2 test score
across brain parcels (0.059), followed by PPO (0.050) and
VideoGPT (0.048). R2 maps of all models had similar topog-
raphy (Fig.1), with spatial Pearson correlation between maps
exceeding 0.98 for all model pairs. The best encoded regions
were visual and somatosensory cortices. The ResNet en-
coded significantly better the visual and sensory regions ver-
sus other two models, while PPO and VideoGPT had almost
no significant difference in R2 maps (Fig. 2). Performance of
brain encoding was degraded on left-out levels, but followed
a similar topography as the original 20 levels for ResNet and
PPO, while performance of VideoGPT fell to chance (Fig. 3).

Figure 1: Test R2 maps of the models, averaged over subjects.
a ResNet b PPO c VideoGPT

Discussion
Our results demonstrate it is possible to encode brain data in
videogames using models based on different types of objec-
tive functions. Surprisingly, the difference in objective func-
tions did not lead to a marked advantage to one of the models
for encoding specific brain areas. The ResNet still encoded
brain activity better than VideoGPT and PPO. The advantage
was moderate for the levels used to train VideoGPT and PPO,
and large for left-out levels. This result is likely attributable to
its more diverse training set, which made it learn a richer set of
features, suggesting that the encoded brain activity is mainly

Figure 2: Difference of the test R2 maps of the models. Shown
ROIs are ROIs where the difference is significant (p < 0.05)
according to a two-sided Wilcoxon signed-rank test, corrected
for false discovery rate. a ResNet minus PPO, positive (red)
values are where the ResNet encodes better b ResNet minus
VideoGPT c PPO minus VideoGPT

Figure 3: Generalization R2 maps of the models, averaged
over subjects. The R2 values are clipped from 0. a ResNet b
PPO c VideoGPT, almost all values are negative.

driven by high-level visual features. This result is inconsis-
tent with the study by Cross et al. (2021) who concluded to
the superiority of RL to vision features. But, this prior work
had only investigated a smaller vision model trained on the
videogame frames instead of a model like ResNet trained on
diverse images. This last point emphasizes that conclusions
from this study must be taken carefully, as the three models
differed on various aspects other than their objective function,
in particular their training dataset and architecture. Given that
PPO and VideoGPT were trained on videogame data and still
managed to achieve similar brain encoding performance as
ResNet, it opens avenues for new experiments to explain brain
activity during videogames. For example, they could be re-
trained to rigorously establish the potential advantages of dif-
ferent objective function (e.g. different reward function in RL)
or architecture (e.g. adding two separate vision branches as
in (Bakhtiari, Mineault, Lillicrap, Pack, & Richards, 2021)) in
terms explaining brain activity in different brain regions, while
carefully controlling for other factors such as dataset size and
diversity.
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