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Abstract

Planning is rarely done in isolation, but in the presence
of other agents who affect the environment and the fu-
ture action space. This shared nature of environment,
cost, and reward is even more crucial to consider when
planning collaboratively, where reward maximization is
dependent on the actions of all collaborating agents. How
do people incorporate the future actions of others in their
planning process? We developed a collaborative dyadic
turn-taking task with decision sequences up to length 16
to answer this question. We found that people can ef-
fectively plan in this context and evidence that they in-
corporate future potential moves of their partner in their
planning process. We constructed and tested computa-
tional models of the behavior, among which, a collabora-
tive heuristic search algorithm that simulated and evalu-
ated the future actions of the partner fit the data the best.
We also showed specific shortcomings of the competing
models.
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Background and Introduction

People live and plan in social environments with intricate inter-
personal dynamics, and planning, as a critical cognitive pro-
cess, is rarely done in total isolation. Since planning requires
a prospective consideration of future actions and states (Ho,
Saxe, & Cushman, 2022), planning effectively in a social en-
vironment requires prediction about the future actions of oth-
ers (Ho et al., 2022) and the integration of these predictions
into the planning process. Previous work has shown that peo-
ple can infer the beliefs and desires of others (Baker & Saxe,
2011), and predict their actions (Joiner, Piva, Turrin, & Chang,
2017; Khalvati et al., 2019), the process of collaborative plan-
ning has been understudied (but see: (Strachan & Torok,
2020)). It is not clear whether and how predictions of actions
by other agents are incorporated into the planning process.
Here we have explored this question by using a novel collabo-
rative decision making task with large state spaces and deep
decision trees. We have constructed computational models of
collaborative planning that integrate action prediction into the
planning process tested these models in predicting human be-
havior.

Task and research design. We designed a task called "Col-
laborative Road Construction” (Fig. 1A), in which participants
planned a route to collectively connect as many cities as
possible within a given shared budget (length of path avail-
able). Players started from different map locations (cities in-
dicated as grey dots) and took turns either to connect a city
or skip their turn, allowing their collaborator to make the next
move. Participants played the single-player version of this
game alone, making decisions for both players. We recruited
30 dyads. Each subject played the multiplayer and the single
player version of the task in two counterbalanced sessions.

= 100

90

80

70

[ ]
L
\ ° ! |
[ ]
Performance (Percent Optimal

\ e %o
\ ° / 60
\ °
\ S
\\ ‘ ° / — G oo dy
) 50 Policy
~— — %, %, %
% /Qé %
%%, 0. PR
3, % %
< L@ J’@,.

Figure 1: A. Collaborative road construction task. An example
of a path taken by a dyad during a trial. B. Performance of
participants and policies as a percentage of the optimal solu-
tion.

Results

Performance was calculated as the percent ratio of score from
optimal. Dyads played well but not optimally, with a per-
formance average between the performance of the weaker
and stronger player and better than the best-performing policy
that did not consider the collaborator at all (Solo Optimal)(t =
11.27, p < 0.001). Skipping can be interpreted as the strate-
gic preservation of action and state-space, and evidence to-
wards taking the partner’s future moves into account during
planning. Dyads skipped more than the minimum necessary
for an optimal solution (¢ = 6.59, p < 0.001). We defined "op-
timal contribution gap” as the average difference between the
number of cities collected by self and other during optimal so-
lutions of each state. Data showed a sharp decline in skip rate
and near symmetrical trends in response time at zero contri-
bution gap (Fig. 2.A), suggesting that people account for their
partner’s available gameplays. We also observed a decline in
accuracy in states where more moves were left in the optimal
path (Fig. 2.B). The U trend in reaction times implied more
deliberation at the start and end of each trial.

Models of Collaborative Planning.

We explored the performance of some decision-making mod-
els with and without planning and with and without considera-
tion of the future actions of the collaborator.

Greedy Model assigns value to each reachable city based
on the budget it has left after traveling to that city (b), plus a
normally distributed noise factor (1). It then travels to the high-
est value city or skips with a given uniform probability (Py;;)
or makes a random move based on a lapse rate (A). This
model does not take any assumptions about its collaborator
into account.

V(a)=b+0o-m

Jointly Greedy Model assumes the value of its collabo-
rator’s greedy action in addition to its own. It then takes an
action if the value of its own greedy action is higher than the
collaborator’s greedy action, and otherwise skips.
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Figure 2: A and B.Data and model simulation summary statis-
tics.

Veelf(@) =b+0M , Voper(a) =b+0-M

Solo Optimal Modell does a full tree search of the game-
plays considering only its own future moves, then assigns
value as the maximum number of collectible cities (nmax) plus
noise to each available action. It then either chooses to take
the highest value action or skips with a uniform probability or
makes a random move based on a lapse rate.

V(a) = I’lmax-l—G'T]

Collaborative Heuristic Tree Search Model (CTS) uses
a value function in conjunction with tree search to evaluate
actions for both self and the other (Fig. 3A). Here the value
function is defined as the linear combination of the number of
cities connected (n.), square root of the number of cities within
reach (n,), remaining budget and noise.

V(a)=nc+wr-/n-+wp-b+06-1m

The tree search algorithm gradually improves the accuracy
of such value estimates by expanding nodes of a decision tree
and recursively backpropagating the maximal value of the suc-
cessor nodes to the predecessor nodes. This model predicts
the future action of the “other” using the same value function,

weights and tree search mechanism as their own but applied
to the current state of the collaborator. The model then evalu-
ates the actions available to “self”, including skipping which is
valued as the maximum value action available to the “other”.
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Figure 3: A.Schematic of the CTS model. B. BIC difference
between each model and the CTS model, summed across
subjects, with 95 percent confidence interval

Model Fitting. We fit the models to the move-by-move data
from each participant separately using maximum-likelihood
estimation (van Opheusden, Acerbi, & Ma, 2020) and
Bayesian adaptive direct search (Acerbi & Ma, 2017).

Model Comparison. The CTS model performs the best with
both BIC and AIC lower than the competing models(Fig. 3B).
We simulated data for all encountered states using models
with best-fitted parameters for each participant. We estimated
response times for the models as the value gap (difference
between the two available actions of highest value), scaled to
match the actual response times average (Fig. 2A and B). We
saw a better performance in predicting data trends for the CTS
model compared to the competing models. Performance was
specifically better for skipping trends and accuracy, at lower
optimal contribution gaps, suggesting the combined effect of
planning and prediction in the decision process.

Conclusion and Future Direction

This task and the modeling approach here have allowed us to
examine the intricacy of the algorithmic mechanisms under-
lying the intertwined nature of planning and action prediction
during collaboration. We revealed empirical evidence for the
incorporation of action prediction into the collaborative plan-
ning process. We showed that a collaborative heuristic search
model performs better than competing models in this context.

Our CTS model assumed the same value function as itself
for the prediction of the other. As a next step, we will examine
models in which the agent assumes a different value function
for the prediction of the future moves of the collaborator. We
will then compare the performance of models that use their
own selves to predict others (similar to simulation theory) to
the ones that use an inference about the other (similar to the-
ory of mind) during their planning process.
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