
Duality of Bures and Shape Distances with Implications for Comparing Neural
Representations

Sarah E. Harvey (sharvey@flatironinstitute.org)
Center for Computational Neuroscience, Flatiron Institute

New York, NY, 10010
Brett W. Larsen (brettlarsen@flatironinstitute.org)

Center for Computational Neuroscience, Flatiron Institute
New York, NY, 10010

Alex H. Williams (awilliams@flatironinstitute.org)
Center for Neural Science, New York University

New York, NY, 10003
Center for Computational Neuroscience, Flatiron Institute

New York, NY, 10010



Abstract
How should neuroscientists mathematically evaluate
whether two individuals or networks have similar neu-
ral representations? A multitude of (dis)similarity mea-
sures between neural network representations have been
proposed, resulting in a fragmented research landscape.
Most of these measures fall into one of two categories.
First, measures such as linear regression, canonical cor-
relations analysis (CCA), and shape distances, all learn
explicit mappings between neural units to quantify sim-
ilarity while accounting for expected invariances. Sec-
ond, measures such as representational similarity analy-
sis (RSA), centered kernel alignment (CKA), and normal-
ized Bures similarity (NBS) all quantify similarity in sum-
mary statistics, such as stimulus-by-stimulus kernel ma-
trices, which are already invariant to expected symme-
tries. Here, we take steps towards unifying these two
broad categories of methods by observing that the co-
sine of the Riemannian shape distance (from category
1) is equal to NBS (from category 2). We explore how
this connection leads to new interpretations of shape dis-
tances and NBS, and draw contrasts of these measures
with CKA, a popular similarity measure in the deep learn-
ing literature.

Keywords: representational similarity analysis; shape metrics,
Bures distance.

Quantifying similarity between neural network represen-
tations is a well-recognized problem in computational neu-
roscience and deep learning (Klabunde et al., 2023; Su-
cholutsky et al., 2023). In neuroscience, measures of rep-
resentational similarity have been used to benchmark mod-
els of biological systems (Kietzmann et al., 2019; Storrs
et al., 2021), and to compare neural activity across dif-
ferent species (Kriegeskorte et al., 2008). In deep learn-
ing, they have been used to characterize learning dy-
namics (Morcos, Raghu, & Bengio, 2018), model robust-
ness (Jones, Springer, Kenyon, & Moore, 2022), and the ef-
fects of changing model architecture (Maheswaranathan et al.,
2019; Nguyen, Raghu, & Kornblith, 2021). Interest in this
area has sparked a proliferation of measures to quantify repre-
sentational (dis)similarity including: representational similarity
analysis (RSA; (Kriegeskorte et al., 2008)), centered kernel
alignment (CKA; (Kornblith et al., 2019)), generalized shape
distances (Williams et al., 2021), canonical correlations anal-
ysis (CCA; (Raghu et al., 2017)), normalized Bures similarity
(NBS; (Tang et al., 2020)), and the Riemannian covariance
distance (Shahbazi et al., 2021). While all of these methods
aim to quantify similar aspects of neural data, much more work
is needed to characterize and understand the meaningful dif-
ferences between these competing methods.

Here we develop a duality principle that links shape dis-
tances (Kendall et al., 2009; Williams et al., 2021) to well-
known quantities in optimal transport (Malagò, Montrucchio,
& Pistone, 2018) and quantum information theory (Nielsen &
Chuang, 2000; Mendonça, et al., 2008; Watrous, 2018). We
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Figure 1: Two methods for measuring network similarity. (A)
Methods that measure distance after aligning neural dimen-
sions. (B) Methods that compare stimulus-by-stimulus repre-
sentational similarity matrices.

can quantify similarity in neural representations using exist-
ing conventions (Klabunde et al., 2023). Let fx : Z 7→ RNx

and fy : Z 7→ RNy be two neural networks that map inputs
over a domain Z to high dimensional neural activation vec-
tors (e.g. hidden layer activations or neuronal firing rates).
Here, Nx and Ny denote the number of neurons in each net-
work. How similar are the networks fx(·) and fy(·)? That
is, how similar are these functions over a collection of in-
puts z1, . . . ,zM ∈ Z? We proceed by stacking neural re-
sponses fx(z1) . . . fx(zM) row-wise into a matrix X ∈ RM×Nx .
Likewise, we form a matrix Y ∈ RM×Ny from the second net-
work’s responses, fy(z1) . . . fy(zM). Lastly, we mean-center
the columns of these matrices to remove overall translations
in firing rate. One may view these matrices as approximations
to each network’s input-output mapping over a discrete set of
M inputs. In general, Nx ̸= Ny, but even if Nx = Ny, we should
not expect the raw Euclidean distance, ∥X −Y∥F to be mean-
ingful since neurons are often indexed arbitrarily. Instead, we
are interested in distances that are invariant to a specified set
of nuisance transformations in the representations. For ex-
ample, if we would like to ignore orthogonal transformations
(including permutations of the neuron indices), we ought to
develop distance functions for which d(X ,Y ) = d(X ,Y Q) and
also d(X ,XQ) = 0 for any orthogonal matrix Q. This can be
formalized by defining an equivalence relation between neu-
ral responses and defining a metric over the corresponding
equivalence classes (Williams et al., 2021). Many measures
of representational similarity either fit a nuisance transforma-
tion that aligns neural dimensions as well as possible (Fig.
1 A) or directly compare stimulus-by-stimulus (dis)similarities
(Fig. 1 B), which are already invariant to certain transforma-
tions. The former encourages us to reason about geometric
features in the space of neural activations, such as curvature
or tangling of manifold structure which feature in theories of
neural computation (Hénaff et al., 2021). The latter avoids



aligning neural axes, and connects to a rich literature in psy-
chology that uses pairwise similarity judgements to interrogate
the structure of cognition (Edelman, 1998).

From the first category, we consider shape dis-
tances (Kendall et al., 2009), which have been estab-
lished in the computational neuroscience literature as a
method to compare neural recordings across animals or
brain regions (Williams et al., 2021). Assuming X and
Y are both M × N matrices, we can define the angular

distance: θ(X ,Y ) = cos−1
(
Tr[X⊤Y ]/

√
Tr[X⊤X ]Tr[Y⊤Y ]

)
which generalizes the elementary formula for the angle
between two vectors. The Riemannian shape distance
is the length of the shortest geodesic path between the
two ‘shapes’ defined by X and Y , given by (Kendall et
al., 2009): θ∗(X ,Y ) = minθ(X ,Y Q), minimized over
nuisance transformations Q in the set of orthogonal
matrices. Closely related to the Riemannian shape dis-
tance is a quantity called the Procrustes size-and-shape
distance (Kendall et al., 2009) (or simply Procrustes
distance): P(X ,Y ) = minQ⊤Q=I ∥X − Y Q∥F . An alter-
native from the second category begins by computing
M × M (i.e. stimulus × stimulus) covariance matrices:
KX = XX⊤ and KY = YY⊤ . We now measure similarity
between the linear kernel matrices without any alignment
(since the neural dimension has been removed, and the
optimization problem above avoided). This is the basic
idea behind RSA (Kriegeskorte et al., 2008), which is
well-established in neuroimaging.

While these two approaches seem quite different, our main
result shows that there exist cases where they coincide ex-
actly, providing a theoretical bridge between the two classes
of techniques. Specifically, there is a measure of distance be-
tween KX and KY that equals the shape distance between
X and Y . We provide a theorem stating that the Procrustes
distance P(X ,Y ) is equivalent to the Bures distance between
linear kernel matrices B(KX ,KY ). Furthermore, the normal-
ized Bures similarity (NBS) is equal to the cosine of the Rie-
mannian shape distance θ∗. These results can also be gen-
eralized for nonlinear kernels.

Theorem 1. Let KX and KY be centered linear kernel
matrices. Then, B(KX ,KY ) = P(X ,Y ) and NBS(KX ,KY ) =
cosθ∗(X ,Y ).

The normalized Bures similarity (NBS) is a sim-
ilarity measure that takes into account the geome-
try of the manifold of positive semidefinite (PSD) co-
variance matrices, and is defined as (Tang et al.,
2020): NBS(KX ,KY ) = F(KX ,KY )/

√
Tr[KX ]Tr[KY ] , with

F(KX ,KY ) = Tr[(K1/2
X KY K1/2

X )1/2]. The quantity F(KX ,KY )
is known as the fidelity and is used in quantum theory as a
measure of quantum state distinguishability (Watrous, 2018).
Analogous to the shape metrics case, the related distance is
the Bures distance (Bhatia, Jain, & Lim, 2019): B(KX ,KY )

2 =
Tr[KX ]+Tr[KY ]−2F(KX ,KY ).

One consequence of our work is a generalization of shape
distances to the case where Nx ̸= Ny. Furthermore, Thm. 1

Figure 2: Comparing CKA and NBS. Points show similarity be-
tween pairs of 10× 10 PSD matrices generated by sampling
two Wishart distributions, of rank 1 and rank 5.

allows us to draw on extensive literature to theoretically char-
acterize shape/Bures distances. For example, it is well known
that the Bures distance and arccos(NBS) on PSD matrices
both satisfy the criteria of a metric space, including the trian-
gle inequality. We conclude that the generalized definitions of
Procrustes and Riemannian shape distance are also metrics,
even though most classical work on shape theory does not
consider datasets with unequal dimensions (Nx ̸=Ny). Thm. 1
also makes clear that normalized shape and Bures distances
converge to reasonable values when either M → ∞ or N → ∞.

Our second set of results investigates the relationship be-
tween NBS and CKA (Kornblith et al., 2019), a popular ap-
proach in the deep learning literature which also compares
stimulus-by-stimulus covariance matrices. From their defini-
tions, one may guess that CKA is related to NBS (and to Rie-
mannian shape distance by theorem 1). We show that CKA
scores between networks can differ substantially (e.g. two- to
three-fold) from NBS scores. We also derive upper and lower
bounds that relate CKA and NBS in terms of the rank of the
covariance matrices; and confirm their rather loose relation-
ship. Setting r(·) = rank(·), we find:

CKA(KX ,KY )/
√

r(KX )r(KY ) ≤ NBS(KX ,KY )
2

NBS(KX ,KY )
2 ≤ min(r(KX ),r(KY ))CKA(KX ,KY ).

(1)

Both of these bounds are equality when r(KX ) = r(KY ) =
1. Fig. 2 shows that while NBS is bound to an envelope by
CKA set by the matrix ranks, there is in general not a one-to-
one relationship between them and the discrepancy between
the two can be large compared with the range of [0,1]. We
conclude that one should not expect CKA and NBS to behave
similarly in practical scenarios.

Overall, our results demonstrate a theoretical equivalence
between seemingly disparate methods, and an empirical di-
vergence between superficially similar methods—motivating
the need for more careful study into the theoretical landscape
of representational similarity.
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