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Abstract
Spatial navigation involves the formation of coherent

representations of a map-like space, while simultane-
ously tracking current location in a primarily unsuper-
vised manner. Despite a plethora of neurophysiological
experiments revealing spatially tuned neurons across the
mammalian neocortex and subcortical structures, it re-
mains unclear how such representations are acquired in
the absence of explicit allocentric targets. Drawing upon
the concept of predictive learning, we utilize a biologically
plausible learning rule which utilizes sensory-driven ob-
servations with internally driven expectations and learns
through a contrastive manner to better predict sensory
information. We implement this learning rule in a net-
work with the feedforward and feedback pathways known
to be necessary for spatial navigation. After training, we
find that the receptive fields of the modeled units resem-
ble experimental findings, with allocentric and egocentric
representations in the expected order along processing
streams. These findings suggest that a self-supervised
prediction of sensory information can extract latent struc-
ture from the environment.

Introduction
A sense of allocentric, or map like space, is essential for

navigating to goal which are outside of the immediate sen-
sory space. Neurophysiological studies have revealed a se-
ries of brain regions with egocentric and allocentric represen-
tations, allowing insight to the steps of transformation from
egocentric signals to allocentric representations (Alexander
et al., 2020), and have been formalized in models of spatial
navigation (Bicanski & Burgess, 2018). It is still unclear how-
ever, how these representations are learned. While modern
machine learning methods can utilize supervised learning to
create allocentric representations which match experimental
findings (Banino et al., 2018), it is unclear how such represen-
tations may be learned in the absence of explicit supervision.
Recent work has shown that self-supervised prediction of sen-
sory information in shallow recurrent networks can learn in-
ternal representations of allocentric space (Recanatesi et al.,
2021). Here, we utilize expand this framework of predictive
coding to utilize a biologically inspired learning rule, and em-
bed the current networks in a topology matching brain regions
known to contain spatial representations, to investigate how
predictive coding may generate additional intermediate trans-
formations from sensory information to spatial knowledge.

Methods
Task & Setup We created a virtual agent which follows an
algorithmically generated trajectory in a virtual 1m X 1m en-
vironment, mimicking the behavior of rodents (Raudies &
Hasselmo, 2012; George, de Cothi, Clopath, Stachenfeld, &
Barry, 2022), and generate a 3-dimensional rendering of vi-
sual information (Chevalier-Boisvert, 2018) to create RGB-
Depth inputs to provide to the agent inputs. The RGB, depth,
rotational velocity and linear running speed are provided to

the agent through separate input streams discussed below.
We then run the simulation, with dynamics and learning rules
described below, for one-thousand trials of 60 simulated min-
utes, after which learning is disabled. The tuning curves are
analyzed on a separate 60-minute trial after weights have
been frozen. We then introduce an impassable 50cm bound-
ary in the middle of the environment to analyze responses to
novel environments after learning.

Model Architecture The overall topology of the network is il-
lustrated in Figure 1, where white blocks indicate a linear en-
coder and the grey blocks indicate a model of canonical mi-
crocircuit as described in the next subsection. Feedforward
inputs onto granular neurons are indicated in blue, and feed-
back inputs onto distal dendrites are shown in red. The net-
work receives a visual input which is decomposed into identity
and distance information before entering the network. A sepa-
rate input pathway supplies self-motion information in the form
of rotational velocity and running speed.

Figure 1: Macroscale model architecture: in which the agent
receives only egocentric information and self motion informa-
tion. Each module indicated by a grey block implements a
form of predictive learning between feedforward (red arrows)
and feedback (blue arrows). Tuning curves in the outer por-
tions of the figure show the firing rates (higher rates in yellow)
for example individual units modeled in each region, across a
simulated 1m virtual environment. The ratemaps show the
primary responses in each region, beginning with egocen-
tric boundary cells in the retrosplenial cortex, boundary vector
cells in perirhinal, place cells in HPC, and head direction tun-
ing in the entorhinal cortex.

Microscale Architecture We implement a rate-approximation
of a model of canonical cortical microcircuit as illustrated in
Figure 2. Each region received a combination of feedforward
inputs onto granular neurons and feedback information onto
distal dendrites of pyramidal units. Such networks have been
shown to learn in a self-supervised manner for simple tasks
when arranged in a hierarchical manner (Chapman & Has-
selmo, 2023). Granular neurons follow a rate-based approxi-
mation of point neurons, where each unit is a leaky-integrator
with a sigmoidal activation function. Pyramidal neurons were
designed to replicate the control of firing rate by somatic in-



put and burst rate by distal dendritic input (Naud & Sprekeler,
2018; Payeur, Guerguiev, Zenke, Richards, & Naud, 2021), by
incorporating additional dynamics:
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The added state uL is the potential of the distal dendrites,
while vL is specifically the somatic potential. FB (“feedback”)
is the collection of all regions which project onto the distal den-
drites, while FF (“feedforward”) is the local inputs from either
the granular neurons or superficial pyramidal neurons. The
burst rate, bL, is controlled through the activation of distal den-
drites

Learning To replicate the local feedback gated learning rules
demonstrated in spiking networks (Chapman & Hasselmo,
2023), feedforward synapses onto the pyramidal neurons
evolve according to the learning rule:

∆WXY = η((pY − p̄Y )⊙ rY )⊗ rX (2)

Where X and Y are the pre and post synaptic neurons, respec-
tively. This rule contains the standard ‘pre-post‘ associational
learning, with an additional gating by the instantaneous burst-
probability compared to a long-term running average, which
implements a weak version of an error signal. This equation
can also be shown to approximate a temporal error term by
the coupling of the dendritic derivative to the derivative of firing
rate (equation 1, line 3). All other weights, including feedback
connections and terminals onto granular neurons, are static.
The untrained granular layer is necessary to sustain activity
when utilizing the temporal error learning rule.

Figure 2: Architecture of the predictive module: The structure
of each module, where rates (‘R’) of each submodule rep-
resent the firing rate of a given population of neurons, and
weights are labeled according to their source and target sub-
modules. Units are coloured by their laminar location, also
denoted by subscript (G)ranular, (S)uperficial, (I)nfragranular,
and (D)istal. Weights are coloured by according to their pri-
mary function in the feedforward (cyan), feedback (maroon) or
local (black) pathways.

Results
Tuning Curves After training, we analyze the tuning curves
of each region utilizing a parametric point-process regression,
specifically testing for place fields, head direction tuning, run-
ning speed, egocentric boundary tuning, and grid cells. Sim-
ilar to previous approaches (Alexander et al., 2022) signifi-
cance for each of these tuning curves was determined by an it-
erative leave-one-out approach from the point-process model,
and statistical significance was determined by comparison to
an F-test. The tuning curves on the outer-ring of Figure 1 in-
dicate the primary feedforward receptive fields identified, with
a transition from sensory-driven representations in outer re-
gions, to allocentric representations in innermost regions. In-
termediate areas contained tuning to a combination of allo-
centric and egocentric information, such as egocentric bound-
ary cells (shown in plots at the top of Figure 1).

Figure 3: Decoding Results: Behavioral variables across re-
gions, as a function of the number of units used in the familiar
(top) and novel (bottom) environments. Mean squared error
is measured, with lower values indicating higher performance.
(Top) Behavioral variables are easily decoded in familiar envi-
ronments in the various regions, even with a small proportion
of units. (rsc=retrosplenial, pr=perirhinal, hpc=hippocampus,
mec=medial entorhinal cortex). (Bottom) In the novel envi-
ronment, allocentric codes are performing at or worse than
chance, while self-motion decoding is conserved.
Behavioral Decoding We next attempt to linearly decode the
behavioral variables (position, head direction, and movement
speed) from each region in both the baseline and novel set-
tings using post-training weights. The novel setting allocentric,
but not egocentric, decoding is largely disrupted compared to
the familiar environment (see Figure 3). This suggests that
additional mechanisms may be required to reconcile large dif-
ferences between sensory inputs and learned expectations.

Discussion Overall, these results validate the potential for
prediction of egocentric information to generate internal rep-
resentations of allocentric space. While a single layer of a
predictive network was shown in previous work to directly ex-
tract allocentric representations, we show here that a hierar-
chy of predictive regions forms intermediate representations
that match experimental findings.



References
Alexander, A. S., Robinson, J. C., Dannenberg, H., Kinsky,

N. R., Levy, S. J., Mau, W., . . . Hasselmo, M. E. (2020, Jan-
uary). Neurophysiological coding of space and time in the
hippocampus, entorhinal cortex, and retrosplenial cortex.
Brain and Neuroscience Advances, 4, 239821282097287.
doi: 10.1177/2398212820972871

Alexander, A. S., Tung, J. C., Chapman, G. W., Conner, A. M.,
Shelley, L. E., Hasselmo, M. E., & Nitz, D. A. (2022). Adap-
tive integration of self-motion and goals in posterior parietal
cortex. Cell reports, 38(10), 110504.

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T.,
Mirowski, P., . . . Kumaran, D. (2018). Vector-based naviga-
tion using grid-like representations in artificial agents. Na-
ture, 557 (7705), 429–433. doi: 10.1038/s41586-018-0102-
6

Bicanski, A., & Burgess, N. (2018). A Neural Level Model
of Spatial Memory and Imagery. eLife, 7, e33752. doi:
10.7554/eLife.33752

Chapman, G. W., & Hasselmo, M. E. (2023). Predictive learn-
ing by a burst-dependent learning rule. Neurobiology of
Learning and Memory , 107826.

Chevalier-Boisvert, M. (2018). Miniworld: Minimalistic 3D En-
vironment for RL & Robotics Research.

George, T. M., de Cothi, W., Clopath, C., Stachenfeld, K. L.,
& Barry, C. (2022). RatInABox: A toolkit for modelling lo-
comotion and neuronal activity in complex continuous envi-
ronments. bioRxiv.

Naud, R., & Sprekeler, H. (2018, July). Sparse bursts optimize
information transmission in a multiplexed neural code. Pro-
ceedings of the National Academy of Sciences, 115(27),
E6329-E6338. doi: 10.1073/pnas.1720995115

Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A., & Naud,
R. (2021, July). Burst-dependent synaptic plasticity can
coordinate learning in hierarchical circuits. Nature Neu-
roscience, 24(7), 1010–1019. doi: 10.1038/s41593-021-
00857-x

Raudies, F., & Hasselmo, M. E. (2012). Modeling Bound-
ary Vector Cell Firing Given Optic Flow as a Cue. PLoS
Computational Biology , 8(6), 1–17. doi: 10.1371/jour-
nal.pcbi.1002553

Recanatesi, S., Farrell, M., Lajoie, G., Deneve, S., Rigotti, M.,
& Shea-Brown, E. (2021). Predictive learning as a network
mechanism for extracting low-dimensional latent space rep-
resentations. Nature communications, 12(1), 1417.


