
Intracranial recordings reveal neural encoding of 
attention-modulated reinforcement learning in humans 

 
Christina Maher (christina.maher@icahn.mssm.edu) 

Friedman Brain Institute 
Icahn School of Medicine at Mount Sinai, New York, NY 

 
Salman Qasim (salman.qasim@mssm.edu) 

Friedman Brain Institute 
Icahn School of Medicine at Mount Sinai, New York, NY 

 
Lizbeth Nuñez Martinez (lizbeth.nunezmartinez@mssm.edu) 

Departments of Neuroscience, Neurosurgery, Neurology 
Icahn School of Medicine at Mount Sinai, New York, NY 

 
Ignacio Saez (ignacio.saez@mssm.edu) 

Departments of Neuroscience, Neurosurgery, Neurology 
Icahn School of Medicine at Mount Sinai, New York, NY 

 
Angela Radulescu (angela.radulescu@mssm.edu) 

Departments of Psychiatry and Neuroscience  
Icahn School of Medicine at Mount Sinai, New York, NY 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Abstract: Reinforcement learning (RL) is tractable in 
multidimensional environments when agents maintain 
efficient state representations, or mental models of relevant 
information. Attention supports state representations in 
service of RL by constraining learning to relevant dimensions. 
However, the physiological processes supporting value 
updating and attentional control are unknown. To investigate 
the neural mechanism supporting these processes we relate 
attention-modulated RL models to neuronal activity recorded 
directly from the prefrontal cortex of neurosurgical patients 
playing a multidimensional decision-making task. These 
models revealed that participants deploy selective attention 
during RL. Model-estimated expected value of the chosen 
stimulus correlated with neuronal activity in the orbitofrontal 
(OFC) and lateral prefrontal cortex (LFPC), though value 
signals in the LPFC were additionally biased by model-
estimated attention. In sum, these results provide 
mechanistic insight into the neuronal implementation of the 
computations involved in attention-modulated RL.  
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Introduction 
Attention supports real-world RL by constraining 
available information in multidimensional environments 
(Niv, 2019).  In doing so, attention facilitates the 
maintenance of state representations, or mental models 
of the environment which include relevant information in 
service of RL. Previous work proposes an algorithmic 
interaction of value-based learning and attention 
(Leong et al., 2017; Niv et al., 2015; Wilson & Niv, 
2012), processes associated with the OFC (Saez et al., 
2018) and LPFC (Buschman & Miller, 2007), 
respectively. However, how these regions interact to 
support multidimensional learning is not well 
understood. Combining intracranial electrophysiology 
(iEEG) and behavioral modeling we hypothesized that: 
(1) participants deploy selective attention during RL, (2) 
OFC and LPFC encode attention-modulated expected 
value, (3) attention biases neural value signals. We 
reveal a neural mechanism by which model-based 
computations are implemented in the OFC and LPFC.  

Methods 

Neurosurgical epilepsy patients (N=20) completed a 
multidimensional decision-making task in which they 
chose between stimuli varying along two dimensions: 
shape and color (Fig. 1A). In each block, participants 
were instructed which dimension was relevant (i.e., 
“shape”). Participants’ selectively attended to the 
relevant dimension and learned which feature (i.e., 
“circle”) was most rewarding. All participants performed 
well (Fig 1B). Gem Hunters captures naturalistic 
learning dynamics, as in the real-world only a subset of 
available information is relevant. Instructing participants 

of the relevant dimension allowed us to investigate 
efficient state representation in service of RL.  

Figure 1: A. Gem Hunters task (6 blocks; 18 trials per 
block). B. Accuracy increased across trials (N=20). 
Dashed line = chance. Error bars = SEM. 

RL models  

We evaluated two RL models: Uniform Attention (UA) 
and Attention at Choice and Learning (ACL). Both 
models are based on Rescorla-Wagner learning rule. 
UA model implements uniform attention to both 
dimensions of each stimulus, whereas ACL model 
implements selective attention to the instructed relevant 
dimension.  We assume participants choose between 
available stimuli based on their expected value (EV):  

𝑉(")"𝑆$$ = ∑ 𝜙%% ∙ 𝑣"(𝑑, 𝑆&)		(Eq. 1)  

𝑉(")"𝑆$$ is the value of stimulus 𝑗	on trial 𝑡, 𝜙 is the 
attention weight on dimension 𝑑, and 𝑣"(𝑑, 𝑆&) denotes 
the value of the feature in dimension 𝑑 of stimulus 𝑆&. 
Following feedback, a reward prediction error (RPE) is 
calculated:  

𝛿" =	𝑟" − 𝑉"(𝑆')		(Eq. 2)  
where 𝑉"(𝑆') is the chosen stimulus’ EV. The RPE 
updates the chosen stimuli’s associated feature values:  

𝑣"()(𝑑, 𝑆') = 𝑣"(𝑑, 𝑆') + 	𝜂	 ∙ 	𝜙% 	 ∙ 	𝛿"		(Eq. 3)  
 
The update is scaled by learning rate 𝜂. Choice 
probability was computed using a softmax action 
selection rule. The ACL model’s 𝜙% was a free 
parameter implementing selective attention to favor the 
relevant dimension (Eq.1/3). The UA model’s 𝜙% was 
fixed at 0.50 for both dimensions.  
iEEG 
Local field potentials were recorded from OFC (N= 144 
electrodes) and LPFC (N=124 electrodes; Fig 3A). We 
leveraged iEEG’s high spatiotemporal resolution to 
measure region-specific fluctuations in neuronal activity 
in response to model-based parameters. As our 
hypotheses involve local information encoding, we 
focused analyses on high gamma activity (70-200 Hz; 
HGA) because this signal captures population-level 
spatiotemporal dynamics and is correlated with fMRI 
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BOLD signal and single-unit spiking (Nir et al., 2007). 
Oscillatory power was z-scored to a baseline ITI.   

Results and Discussion 

Selective attention modulates RL. We used a leave-
one-game-out cross validation procedure for maximum 
likelihood estimation. The ACL model best explained 
participants’ behavior (t(19) = 2.32, p < 0.05; Fig 2A). 
This finding confirms our hypothesis that participants 
deploy selective attention to maintain efficient 
representations of relevant information during RL. 
Participants’ fitted attention weight (𝜙%) was positively 
correlated with task performance (ρ(18) = 0.42, p < 
0.05; Fig 2B), demonstrating that even with instruction, 
sustained selective attention is necessary for 
successful RL in multidimensional environments. 

Figure 2: A. Average choice likelihood per trial shows 
ACL model predicted behavior significantly better than 
UA model (p < 0.05). B. Correlation between fitted 
attention weight and task performance shows attention 
is necessary for successful RL (p < 0.05).  
OFC and LPFC encode attention-modulated value 
signals. As hypothesized, we observed a significant 
effect of attention-modulated EV for the chosen 
stimulus (ΦEV; Eq.1) on OFC and LPFC HGA power. A 
linear mixed effects model nested within subjects was 
conducted within region to estimate how strongly ΦEV 
was represented in OFC and LPFC HGA power while 
controlling for reward, chosen features, and relevant 
dimension. ΦEV was represented significantly in both 
the OFC (β= -0.01, z = -3.78, p < 0.001) and LPFC (β= -
0.02, z = -3.14, p < 0.01; Fig 3B).  

LPFC value signals are biased by attention. We 
found participants’ selectively attend to relevant 
information to guide RL (Fig 2A). Further, individual 
differences in selective attention were related to 
performance (Fig 2B). Therefore, we hypothesized 
neural encoding of value signals will reflect an 
attentional bias. To test this hypothesis, subject-level 
estimates of ΦEV encoding (β coefficient) within region 
were correlated with participants’ fitted attention weight 
(𝜙%). There was a significant negative correlation 
between LPFC ΦEV encoding and 𝜙% (ρ(18) = -0.69, p 
< 0.001), demonstrating that greater selective attention 
to the relevant dimension is associated with stronger 
ΦEV encoding in the LPFC. This finding suggests the 
neural mechanics of attention and RL are overlapping 
which is supported by findings in nonhuman primates 
(Chiang et al., 2022; Jahn et al., 2024; Wallis et al., 
2001; Wallis & Miller, 2003). This finding was region 
specific (OFC: ρ(17) = -0.13, p = 0.59), suggesting 
specialized roles for the OFC and LPFC in RL wherein 
the LPFC directs attention to relevant information while 
the OFC tracks values for relevant states (Schuck et al., 
2016; Wilson et al., 2014).   

Conclusion 
We leveraged behavioral modeling’s parameterization 
of latent cognitive processes and access to direct-brain 
recordings in humans to identify the neural architecture 
that supports the computational processes underlying 
adaptive decision-making. By integrating attention and 
RL, we address the complexity of value-based learning 
in multidimensional environments and relate this 
computational solution to a biologically plausible neural 
mechanism. Our behavioral results suggest humans 
selectively attend to reward-relevant information, thus 
maintaining efficient state representations to guide RL. 
Neural results reveal OFC and LPFC HGA encodes 
ΦEV. This encoding is biased by attention in the LPFC. 
Together our results provide neurocomputational 
correlates of flexible learning and decision-making.  

Figure 3: A. Electrodes (black) in OFC (orange; 144 electrodes) and LPFC (red; 124 electrodes).  B. Z-scored HGA 
power for low/high	 ΦEV in two exemplar patients (OFC=11 electrodes; LPFC=5 electrodes). Dashed line = 
choice/reward. C. Correlation between fitted attention weight and LPFC attention-modulated EV encoding reveals 
an LPFC-specific interaction of attention and value-learning (p < 0.001). 
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