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Abstract: Studying the geometry of neural 
representations formed by populations of neurons has 
provided powerful insight into cognition. 
Microelectrodes provide access to both single-neuron 
activity and local field potentials (LFPs). Little is known 
about whether the geometry of representations can be 
studied at the level of the LFP. Simultaneous comparison 
of representational geometries induced in each of these 
signals during a cognitive task can reveal properties of 
brain computation at multiple spatio-temporal scales. 
Here, we study neural representational geometries 
present in single-unit activity and in local field potentials 
in the brains of neurosurgical patients who are 
performing an inferential reasoning task. We 
demonstrate that the content and format of neural 
representations can be readily quantified for LFP, and 
that spike- and LFP-based geometries can be strongly 
correlated, albeit in a region-dependent manner.  
Keywords: neural representation geometry, single 
neuron, local field potential 

Introduction 
A major goal of neuroscience is to understand how 

the relational structure of entangled, high-dimensional 
sensory inputs and internal states can be re-formatted to 
achieve complex cognition and behavior (Chung & Abbott, 
2021; Marr, 1982). A growing body of literature concerns the 
study of representational geometry in neural state spaces, 
which are constructed using either the activity of single 
neurons (Bernardi et al., 2020; Boyle et al., 2024; Courellis 
et al., 2023; Fusi et al., 2016; Nogueira et al., 2023; Rigotti et 
al., 2013), or coarse-grained signals, such as EEG or fMRI 
(Bhandari et al., 2024; Ito et al., 2022; Kikumoto et al., 2023; 
Sheahan et al., 2021). However, to date, no studies have 
examined the relationship between representational 
geometries induced by neuronal activity (spikes) and 
simultaneously recorded local field potentials (LFP) in the 
human brain (Kreiman et al., 2006).  

The LFP represents the coherent inputs and network 
states of a brain region (Buzsáki et al., 2012), whereas spikes 
are a reflection of the outputs of a region. Comparing the 
neural representations formed by these two types of signals 
can thus provide insights into the neural computation 
performed through the lens of transformations in 
representational geometry. Here, we did so by performing 
side-by-side geometric analyses of LFP and single-neuron 
activity recorded simultaneously (Courellis et al., 2023) from 
the brains of neurosurgical patients performing an inference-
related cognitive task.  

Methods 

Recording Procedure Neurosurgical patients were 
implanted with Behnke-Fried electrodes (Fried et al., 1999) 
that allowed for recording of single-unit activity and LFP 
from several brain structures (Fig. 1d) including the ventral 
temporal cortex (VTC), hippocampus (HPC), amygdala 
(AMY), pre-supplementary motor area (preSMA), dorsal 
anterior cingulate cortex (dACC), and ventromedial 

prefrontal cortex (vmPFC). Unit activity from these regions 
was isolated using standard spike sorting techniques 
(Rutishauser et al., 2006). LFPs were simultaneously 
recorded from the same high-impedance electrodes on which 
the spikes were detected, and were processed using standard 
techniques (Minxha et al., 2020). Electrode localization was 
also conducted with peri-op MRI and CT as previously 
reported (Minxha et al., 2020).  

Task Patients performed a serial-reversal learning 
task where four different images (stimuli) were paired with 
either a left or right button press (Fig. 1a). There were two 
different latent contexts (never overtly signaled), each 
defined by its own unique stimulus-response (SR) map, and 
all SR associations were inverted between the two contexts. 
This task structure allowed subjects to perform inference: 
following the first incorrect trial after switching to a new 
context, a patient could immediately infer the new correct 
response for every image that follows by inverting responses. 
The ability of patients to perform inference was 
operationalized as their accuracy on “inference trials” – the 
first instance of encountering a stimulus after a switch (Fig. 
1c, black square). A full description of this task is provided 
in (Courellis et al., 2023). 
Quantifying Representation Geometry We used two 
metrics to quantify features of neural representation 
geometry: decoding accuracy and cross-condition 
generalization performance (CCGP). Extensive discussions 
of these metrics and their uses are available in prior work 
(Bernardi et al., 2020). In brief, these metrics operate over 
balanced dichotomies of task conditions (Fig. 1b), which are 
formed by splitting the 8 unique conditions into two equal 
groups of 4 conditions (e.g. Fig. 1b, 4 points in context 1 vs 
4 points in context 2 is the context dichotomy). Each metric 
is computed independently for all possible 35 balanced 
dichotomies. Decoding accuracy across all dichotomies is 
greater on average in representations that encode more task 

 
Figure 1. (a) Task structure. (b) 8 unique task conditions 
lead to 35 balanced dichotomies. Letters are unique 
stimuli.Note: the response to stimuli A/C is L in context 1 
and R in context 2, v.v. for B/D. (c) Inference performance 
for sessions where patients performed above chance during 
non-inference trials (n=36 sessions, 13 patients). (d) Implant 
locations for all patients. 



variables and interactions thereof. CCGP is an index of 
abstraction, or disentangling, of one variable with respect to 
others that are simultaneously encoded.  

Note that the above metrics can be computed using 
any set of features that contain neural data recorded during 
the task. For the LFP, the features were wavelet coefficients 
estimated using a continuous wavelet transform for log-
spaced frequencies from 0 to 180 Hz from 0.2 to 1.2s after 
stimulus onset (Fig. 2a). For the single-unit activity, spikes 
were counted during the same time window (Fig. 2f). 
Features were estimated trial-by-trial. Decoding accuracies 
and CCGPs were cross-validated on individual trials. 

Results 
Representational geometry of LFP in VTC is highly 
structured. Data recorded over 36 sessions (n = 13 patients) 
yielded LFP from 2960 channels (160 VTC, 616 HPC, 544 
AMY, 528 preSMA, 568 dACC, 544 vmPFC). Sessions were 
classified as “Inference Present” (n=22) or “Inference 
Absent” (n=14) based on performance on the first inference 
trial (Fig. 1c). Analyses shown in Fig. 2d-j were performed 
using the “Inference Present” sessions. We begin by 
considering LFP geometry in the VTC, a region which is 
known to exhibit spike-LFP correlation in the nonhuman 
primate (Kreiman et al., 2006). Analysis of VTC LFPs 
revealed a highly structured representation wherein stimulus-
identity related dichotomies (brown, purple, pink) were 
decodable (Fig. 2b) and in an abstract format (Fig. 2c), 
regardless of the inference status of the patient (Fig. 2b,c, left 
vs right). These findings are consistent with VTC being a 
sensory area containing task-invariant visual stimulus codes 
(Courellis et al., 2023). 

Band-limited geometric analyses revealed that low 
and high frequency LFPs significantly contribute to the 
representational geometry (Fig. 2d), and that the geometry is 
highly correlated across frequencies (Fig. 2e, all ρ > 0.75, 

linear correlation between CCGP over all dichotomies). 
Thus, representational geometry in LFP does not arise from 
high-gamma alone, which is correlated with neuronal spiking 
(Buzsáki et al., 2012). 

Spike- and LFP-based Representational 
Geometries are correlated in an area-dependent manner. 
The same neural recordings yielded 2694 well isolated 
single-units (261 VTC, 494 HPC, 889 AMY, 269 preSMA, 
310 dACC, 463 vmPFC). Geometric analyses on VTC spikes 
(Fig. 2g,h) revealed a representational geometry that was 
highly correlated with the one found in the LFP through both 
variable decodability (ρ = 0.81) and CCGP (Fig. 2i, ρ = 0.95). 
This relationship, however, was not conserved across areas, 
with Spike-LFP CCGP correlations decreasing in more 
anterior regions (Fig. 2j). 

Discussion 
This analysis is a major step towards developing an 

understanding of how the relational structure of cognitive 
task representations is simultaneously encoded and 
transformed between neuronal spikes and LFP. We find that 
the representational format in VTC is strongly aligned 
between spikes and LFP. However, this relationship breaks 
down in other regions despite encoding of the individual task 
variables by both the neurons (Courellis et al., 2023) and the 
LFP. For example, stimulus-identity related dichotomies are 
decodable in both the LFP (not shown) and spikes in vmPFC, 
but their geometries are not correlated at the level of balanced 
dichotomies, warranting further investigation.  

Many features of LFP representational geometry 
remain to be explored, including the learning- and 
performance-dependence of the LFP geometry in the context 
of the cognitive task, the details of how spike and LFP-based 
geometries differ in a region-specific manner, and the 
resultant implications for local computations occurring in 
each of these regions.  

 
Figure 2. (a) Trial-by-trial LFP power was estimated with wavelet coefficients. Differences in task variable decodability 
(b) and CCGP (c) when comparing inference absent (left) and present (right) sessions when using LFP power. Geometric 
analysis performed on band-limited LFP wavelet power shows significant encoding of task variables at all frequencies (d)  
and that the geometry across frequencies is highly conserved (e). Simultaneously recorded single-unit activity (f) was also 
used to perform task variable decoding (g) and CCGP (h) analysis. (i) Task variable CCGP is highly correlated between 
spiking activity and LFP. (j) Spike-LFP correlation decreases anteriorly along rostro-caudal axis of brain. 
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