
 

Word-Order Error Detection Helps Data-Efficient 

Language Models Learn Syntax 

 
 

Alexander Fung* (alexfung@mit.edu) 

Department of Brain and Cognitive Sciences, MIT 

Cambridge, MA 02139 

 

Chengxu Zhuang* (chengxuz@mit.edu) 

Department of Brain and Cognitive Sciences, MIT 

Cambridge, MA 02139 

 

Steven T. Piantadosi (spiantado@gmail.com) 

Departments of Psychology and Neuroscience, UC Berkeley 

Berkeley, CA 94720 

 

Jacob Andreas (jda@mit.edu) 

Department of Electrical Engineering and Computer Science, MIT 

Cambridge, MA 02139 

 

Evelina Fedorenko (evelina9@mit.edu) 

Department of Brain and Cognitive Sciences, MIT 

Cambridge, MA 02139
  



 

Neural language models (LMs) require vast amounts of 

data to master syntax—a set of rules for how word 

arrangements create complex meanings. In contrast, 

children learn efficiently from a small amount of linguistic 

input. Inspired by findings of early sensitivity to word 

order information in children, we here augment LM 

training with a novel objective that emphasizes word 

order, in an attempt to minimize the data efficiency gap 

between LMs and humans. The new objective requires 

discriminating between grammatical sentences and 

sentences with word-order perturbations. After training 

LMs on developmentally plausible amounts of data, we 

find that LMs with this augmented training outperform 

control LMs (trained on standard masked language 

modeling) on select components of an established 

benchmark of syntactic knowledge (BLiMP) and a new 

benchmark we developed that targets word-order error 

detection. These results suggest that integrating 

synthetic tasks can effectively reduce the data efficiency 

gap between neural LMs and human learners. 

Keywords: syntax learning; neural language models; 

word order; masked language modeling; data 

augmentation. 

Introduction 

Within the first few years of life, children learn how 

words go together in a language, which allows them to 

decode complex meanings from others’ productions 

and express their own ideas through language 

(MacWhinney 2013). Neural language models (LMs) 

also acquire syntactic knowledge but require massively 

more linguistic data to do so (Alex Warstadt et al. 2023; 

A. Warstadt and Bowman 2022). Of course, children 

and LMs learn language in different ways. One 

important difference is that children are exposed to 

grammatically ill-formed utterances, which get 

corrected; this includes i) their own early productions, 

which commonly use incorrect word orders, and which 

adults often correct (Saxton, Backley, and Gallaway 

2005; Clark 2020); and ii) word-order errors in adults’ 

productions, which typically get self-corrected (Levelt 

1983; Roelofs 2020; Chouinard and Clark 2003). 

Aiming to similarly emphasize word-order correctness, 

we supplement LM training with a learning objective 

whose goal is to differentiate between grammatical 

sentences and sentences with word-order errors. We 

train LMs on developmentally plausible amounts of 

data and then evaluate them on the standard BLiMP 

benchmark (Alex Warstadt et al. 2019) and two new 

benchmarks: word-order error detection and masked 

function word prediction. The new benchmarks test 

core syntactic knowledge in a theory-neutral way (cf. 

BLiMP, which targets specific phenomena, many of 

which are relevant to a particular theory of grammar) 

and have the additional advantage of using naturalistic 

materials constructed from the validation and test sets 

of the same corpus as the training sentences. 

Methods 

Model training 

The network architecture of our models is an encoder-

only 12-layer transformer (Vaswani et al. 2017). We 

train models on 5M, 15M, and 50M tokens using either 

masked language modeling (MLM) on fixed length (128 

tokens) input (“Baseline models” in Fig. 1) or the 

combination of MLM and the new word-order 

emphasizing objective (“Word-Order models” in Fig. 1). 

Specifically, we prepend a [CLS] token to the 128-

token input, then map the 5th hidden state of the model 

output to a binary correct/incorrect order label with a 

3-layer perceptron of hidden size 768. The training 

objectives use the same dataset, but with 

independently drawn batches, and loss is summed 

across the objectives. Our MLM objective follows the 

training paradigm of RoBERTa (Liu et al. 2019). Our 

training data is sampled from Smashwords (Alex 

Warstadt et al. 2020). 

Benchmarks 

Masked Function Word Prediction In this 

benchmark, 128-token chunks are sampled from the 

test set of the training corpus, and the models are 

asked to predict masked function word tokens, as 

identified by Stanza (Qi et al. 2020). 

 

Word-Order Error Detection This benchmark involves 

discriminating between individual sentences from the 

test set of the training corpus and incorrect word-order 

versions of each sentence generated by randomly 

shuffling two consecutive words. For Word-Order 

models, we use the word-order readout head to 

perform this evaluation. We also perform a surprisal-

based evaluation for both model types: first, we find the 
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best discriminating sum-surprisal threshold for the 

validation set, then apply this threshold to the test set. 

 

BLiMP The BLiMP benchmark (Alex Warstadt et al. 

2019) is a suite of 67 linguistic phenomena across 13 

categories, spanning morphology, syntax, and 

semantics. The benchmark uses the minimal-pair 

paradigm from linguistics, where each pair consists of 

a grammatically correct sentence and a minimally 

different but incorrect one. 

Results 

Co-training on the word-order-targeting objective 

improves performance on the word-order benchmark: 

Word-Order models outperformed Baseline models 

when using the word-order readout head, while 

performance approximately matched Baseline models 

using the sum-surprisal method. On BLiMP, overall 

performance is similar, but Word-Order models 

improve on the Quantifiers task suite, for which word-

order information is critical (Fig. 1D). Meanwhile, 

accuracy on the function word benchmark decreased 

slightly. In summary, our augmented (Word-Order) 

models improve on the word-order benchmark and 

some BLiMP tasks, showing the benefit of a mixed 

objective that emphasizes word-order information. 

However, Word-Order models’ similar or lower 

performance on other benchmarks suggests that 

emphasis on word order does not generalize to all 

aspects of syntax learning, and additional or different 

inductive biases are needed to fully bridge the data-

efficiency gap between LMs and children. 

  

Figure 1. Training on the word-order emphasizing objective improves some but not all evaluation benchmarks. A. 

Models are trained on both a masked language modeling objective and a word-order objective in alternating batches. B. 

Predicting masked function words. Two models starting from different seeds are trained for each model class and each 

size of the training dataset. The dots represent their individual performances and the bar height is their average. C. 

Performance on the word-order benchmark for 6-word (left panel) and 24-word sentences (right panel). D. Mean 

performance on all 67 BLiMP tasks (left panel) and the 4 “Quantifiers” tasks (right panel). 
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