
Computational journey from numerical cognition to arithmetic ability

Denis Turcu1 (dt2626@cumc.columbia.edu), Katharyn Fatehi2
1Neuroscience Department, 2Engineering Undergraduate Program - Columbia University, USA

Abstract
Numerical cognition sets the foundation for developing
arithmetic abilities, yet performing arithmetic operations
is much more abstract, complex and subtle than iden-
tifying numbers. This poses the question whether ani-
mals that demonstrate numerical cognition are necessar-
ily equipped to develop arithmetic abilities. Recent exper-
imental studies explored this question in multiple species
and found that these animals learn to add and subtract.
Here, we used recurrent neural networks (RNNs) to inves-
tigate possible neural mechanisms underlying arithmetic
abilities. We found that our models perform very well on
in-distribution test data, but do not generalize well to out-
of-distribution test data. The two main reasons for poor
generalization are 1) models do not learn the basic un-
derlying arithmetic operation, and 2) bounded activation
function prohibits models to compute on arbitrarily large
scales. Our work suggests that developing arithmetic
abilities requires specific capacity for abstraction on top
of learned or innate numerical cognition, consistent with
previous cognitive studies. While most times lack of nu-
merical cognition implies lack of arithmetic abilities, we
point out that the inverse, i.e. having numerical cognition
implies having arithmetic abilities, need not be true, and
we demonstrate this result in an RNN model.

Keywords: decision making; numerical cognition; arithmetic
ability; recurrent neural network

Introduction
Numerical cognition, i.e. the ability to identify numbers, sets
the foundation for developing arithmetic abilities, i.e. adding
two numbers of arbitrary magnitudes. Recent experimen-
tal studies (Howard, Avarguès-Weber, Garcia, Greentree, &
Dyer, 2019; Schluessel, Kreuter, Gosemann, & Schmidt,
2022) found that multiple species demonstrating numerical
cognition in previous works, e.g. honeybees (Chittka &
Geiger, 1995; Dacke & Srinivasan, 2008; Gross et al., 2009;
Skorupski, MaBouDi, Dona, & Chittka, 2018), cichlids (Agrillo,
Petrazzini, & Bisazza, 2015; Mehlis, Thünken, Bakker, &
Frommen, 2015) and stingrays (Daniel, Alvermann, Böök, &
Schluessel, 2021; Kreuter, Christofzik, Niederbremer, Bollé,
& Schluessel, 2021), can learn to add and subtract 1 in the
range of numbers from 1 to 5. Motivated by the belief that per-
forming arithmetic operations is much more abstract, complex
and subtle than identifying numbers (Butterworth, 2005), here,
we investigate whether animals that demonstrate numerical
cognition are necessarily equipped to develop arithmetic abil-
ities using RNN models.

Consistent with previous cognitive studies (Butterworth,
2005), our work suggests that developing arithmetic abilities

requires specific capacity for abstraction, on top of learned or
innate numerical cognition. We found that RNNs generalize
well when they use the task’s underlying arithmetic operation,
whether they inferred it during training or they were specifi-
cally trained to use it. On the other hand, RNNs that did not
infer and were not trained to use the underlying arithmetic op-
eration could only perform well on in-distribution test data, but
fail to generalize even to simple cases of out-of-distribution
test data. This suggests that specialized ability for abstraction,
i.e. broadly learning to add rather than learning training data
statistics, is highly important for generalized performance. We
also found that bounded activation functions prohibit RNNs to
compute on arbitrarily large scales. Possible solutions to this
problem include further specializations such as using compo-
sitionality, e.g. arithmetic carry method, or using logarithms.

Methods & Results
We replicated the task designed by Howard et al. (2019) (and
later used Schluessel et al. (2022)) using an RNN model. The
task consists of two stages. In the first stage, the subject in-
spects an input containing information about two numbers, re-
ferred to as a and b here. In the second stage, the subject
losses direct access to the information presented in the first
stage, and it inspects a new input that contains information
about two numbers, L and R for the left and right choices re-
spectively. The subject needs to make a choice between the
two directions and is required to find which of L or R is equal
to a+b. We used RNNs to mimic both the long-term memory
necessary to acquire the arithmetic and decision rules and the
short-term memory needed to solve individual trials.

Our model combines two RNNs to separate the two stages
of the task, match the experimental design and allow interpre-
tation of the underlying computation (Fig A). We endowed our
model with numerical cognition, meaning we input the num-
bers a,b,L and R directly, since numerical cognition is our
working assumption and previous work showed that various
models can convert visual inputs to numbers (Yang, Ganichev,
Wang, Shlens, & Sussillo, 2018). We trained RNNs of the
form ṙ(t) = −r(t)+σ

(
W recr(t)+W ini(t)+b

)
with readout

W outr(t) using backpropagation through time (BPTT), where
b is a bias, σ(x)= tanh(Nx/200) ·200/N and N is the number
of recurrent units. We also trained models achieving similar
performance (data not shown) with σ(x) = max(x,0), but we
focused on the modified tanh version for biological plausibil-
ity – firing rates in real neurons are bounded from both above
(saturation) and below (no firing), so arbitrarily large inputs a
and b cannot be represented in single neurons. We scaled
the amplitude of the activation function inversely proportional
to the network size such that we could maintain W out

j ∼ O(1)
while ensuring larger networks would not have an advantage



over small ones. The constant “200” enables our networks to
process numbers well outside of our datasets (Fig B). We split
our datasets into multiple regions and tested our models on
examples in which both a and b were seen during training, but
not together (test1), only one of a or b was seen (test2), or
neither a nor b was seen (test3). Our model learns the task
and performs well on validation data not seen during train-
ing, but performance decreases significantly on test data and
with task difficulty (Fig C). We also note that larger networks
perform worse on test data, suggesting overfitting and low di-
mensionality of the task, which we discuss below.

Two different training methods address whether ex-
plicit arithmetic instruction is important for the task.
We used BPTT to minimize λ∑

tF
t>tON(z(t) − (a + b))2 +

∑
tF
t≥ts.d.

BCE(p(t), target) in the “Add & Decide” version, or
just the second term of the sum in the “Decide only” version,
where BCE(·, ·) is binary cross entropy. We found that ex-
plicit addition training improved performance (Fig D). Never-
theless, even the best “A.&D.”–trained model could not ac-
curately carry out addition on the test datasets, not even on
the small numbers range (Fig E). While z(t) of the “A.&D.”–
trained models looks as expected, interpretable and robust
on the training dataset, we found that the best “D. only”–

trained model employs a different mechanisms to solve the
task (Fig F). We further explored the computational mecha-
nisms using dimensionality reduction, both latent circuit infer-
ence (Langdon & Engel, 2022) and PCA. We found that net-
works as small as 3 units for each RNN could solve the task
similarly to the other models we trained, however they would
not generalize. We found that linear RNNs (σ(x) = x) learn
addition and generalize very well, but rely on arbitrarily large
firing rates, an unrealistic feature for biological neurons.

Discussion

Our work demonstrates the importance of inductive bias, in-
ternal representation of arithmetic operations in this case, for
appropriate task generalization. We argue that numerical cog-
nition on its own, without architecture or training procedure
specializations, is not enough to guarantee development of
arithmetic abilities via associative learning. Here, we focused
on a combination of architecture and training specializations to
provide interpretability of our results, but other solutions may
employ different types of specializations, for example com-
positionality or logarithms to solve the problem of computing
across arbitrary scales.

A RNNs architecture. Orange RNN processes the input in the first stage and produces a scalar to avoid passing down information
about the individual numbers. Purple RNN processes the input in the second stage to produce the probability that the correct
answer is in the left position. The RNNs are same size and this architecture ensures that the arithmetic computation takes place
in the orange RNN, if at all. B Schematic of input data, the two numbers a and b. The two numbers were uniformly sampled for
each dataset, train, validation, test1, test2 and test3. C RNNs’ performance. Chance level (black line), medians (white ellipses),
interquartile ranges (thick bars). 10k to 100k examples per dataset. Random seeds n > 250 RNNs and Nepochs = 10k. D RNNs’
performance by training type. E Addition error heatmap of the best “A.&D.” RNN. Dashed lines mark the regions of the different
datasets (Fig B). Color map scales differ by one order of magnitude between the magenta and cyan regions. F z(t) and p(t) for
the best “A.&D.” model and best “D. only” model. Each color represents a set of {a,b} inputs with a+ b constant (thin dashed
lines in upper left plot). p(t) plots arranged such that p(t) = 1 is always correct.



Acknowledgments
DT is supported by the Gatsby Charitable Foundation
GAT3708, The Kavli Foundation, and Boehringer Ingelheim
Fonds. The funders had no role in study design, data collec-
tion and analysis, decision to publish, or preparation of the
manuscript. We thank LF Abbott and the Abbott lab for helpful
discussions.

References
Agrillo, C., Petrazzini, M. E. M., & Bisazza, A. (2015). At the

root of math: Numerical abilities in fish. , 1, 3–33.
Butterworth, B. (2005). The development of arithmetical abili-

ties. Journal of Child Psychology and Psychiatry , 46, 3–18.
Chittka, L., & Geiger, K. (1995). Can honey bees count land-

marks? Animal Behaviour , 49(1), 159–164.
Dacke, M., & Srinivasan, M. V. (2008, 10). Evidence for count-

ing in insects. Animal Cognition, 11, 683–689.
Daniel, M. M., Alvermann, L., Böök, I., & Schluessel, V.

(2021). Visual discrimination and resolution in freshwater
stingrays (potamotrygon motoro). Journal of Comparative
Physiology A: Neuroethology, Sensory, Neural, and Behav-
ioral Physiology , 207 , 43–58.

Gross, H. J., Pahl, M., Si, A., Zhu, H., Tautz, J., & Zhang, S.
(2009). Number-based visual generalisation in the honey-
bee. PLOS ONE , 4, e4263.

Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree,
A. D., & Dyer, A. G. (2019). Numerical cognition in honey-

bees enables addition and subtraction. Science Advances,
5, 961–967.

Kreuter, N., Christofzik, N., Niederbremer, C., Bollé, J., &
Schluessel, V. (2021). Counting on numbers—numerical
abilities in grey bamboo sharks and ocellate river stingrays.
Animals 2021, Vol. 11, Page 2634, 11, 2634.

Langdon, C., & Engel, T. A. (2022). Latent circuit infer-
ence from heterogeneous neural responses during cogni-
tive tasks. bioRxiv , 2022.01.23.477431.

Mehlis, M., Thünken, T., Bakker, T. C., & Frommen, J. G.
(2015). Quantification acuity in spontaneous shoaling de-
cisions of three-spined sticklebacks. Animal Cognition, 18,
1125–1131.

Schluessel, V., Kreuter, N., Gosemann, I. M., & Schmidt, E.
(2022). Cichlids and stingrays can add and subtract ‘one’ in
the number space from one to five. Scientific Reports 2022
12:1, 12, 1–11.

Skorupski, P., MaBouDi, H. D., Dona, H. S. G., & Chittka, L.
(2018). Counting insects. Philosophical Transactions of the
Royal Society B: Biological Sciences, 373, 20160513.

Yang, G. R., Ganichev, I., Wang, X. J., Shlens, J., & Sussillo,
D. (2018). A dataset and architecture for visual reasoning
with a working memory. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 11214 LNCS,
729-745.


