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Abstract
Visual projection neurons (VPNs) in Drosophila
melanogaster ’s visual system integrate and project
optic lobe information to the central brain. However, the
specific visual features integrated by various VPNs are
not well understood. Understanding this neural code is
crucial for uncovering the inner workings of visuomotor
transformations during behaviors like courtship and
flight. We utilized VPN recordings from multiple studies
to train deep neural network (DNN) models, including
classic convolutional and connectome-inspired DNNs,
to predict neural responses of VPNs within the optic
glomeruli. Our models revealed the stimulus preferences
and temporal properties for each optic glomerulus (OG).
We found that despite large differences in architecture,
the DNN models had similar accuracy in predicting OG
responses. Thus, the artificial stimuli traditionally used
to probe visual function—moving spots and bars—are
too impoverished to distinguish competing models. We
propose a new class of stimuli, optimized by our models,
that maximize the differences in predicted responses
between models. Presenting these “controversial”
stimuli in future experiments will better refine our DNN
models and unlock further insights into fruit fly visual
processing.

Keywords: visual system; Drosophila; optic lobe; op-
tic glomeruli; lobula complex; deep learning; data-driven
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Introduction
Many insights about early visual processing have arisen
by carefully investigating the visual system of the fruit fly
(Drosophila melanogaster ) (Currier, Pang, & Clandinin, 2023),
especially about direction selectivity (Strother et al., 2017).
Still, we are far from characterizing all neurons in this visual
system, especially the population of neurons that read out
from the optic lobe and project to the central brain. These
neurons, called visual projection neurons or LC neurons (as
they project from the lobula’s columns), are highly organized.
Each LC neuron type projects to a single optic glomerulus
(OG) with ∼57 glomeruli in total (Fig. 1a). The stimulus tuning
of each OG has typically been characterized by recording OG
responses to a battery of visual stimuli (e.g., looming and mov-
ing spots and bars). Although general tuning properties can
be inferred from OG responses to these stimuli, the precise
tuning of each OG and its underlying computations remain
open questions.

To precisely characterize OG function and tuning, we
sought a computational model that accurately predicts OG re-
sponses given the same visual stimulus presented to the fly.
To date, proposed models of LC function are either task-driven
(Cowley et al., 2023; Lappalainen et al., 2023) or normative
(Hindmarsh Sten, Li, Otopalik, & Ruta, 2021). Here, we di-
rectly train deep neural network (DNN) models on recorded
OG responses. Given enough recordings and stimuli, our

ba

LC17
LC12
LC11

LC17
LC12

model LC responses

DNN model

real LC responses
LC projection 
neurons

optic
  lobe

optic
glomerulus

lamina

medulla

lobula

LC11

visual
stimulus

tim
e 

data-optimized connectome-inspired

data-optimized black-box DNN model

time sp
ac

e

DNN model

conv lstm

Figure 1: Data-optimized DNN models of fruit fly visual
neurons a. We train DNN models with previous recordings
of LC neurons that comprise the optic glomeruli to predict OG
responses to any stimulus. b. We consider three different
model architectures.

data-driven DNN model should be highly accurate in predict-
ing OG responses. We test different DNN architectures, in-
cluding “black-box” networks whose sole purpose is predic-
tion as well as “connectome-inspired” networks whose con-
nections reflect those of the recently-released FlyWire con-
nectome (Flywire Consortium, 2024). We then use these DNN
models to characterize the tuning properties of the OGs, in-
cluding each OG’s preferred stimulus that maximizes its re-
sponse. Our key finding is that the current artificial stimuli
used to probe OG function—moving dots and bars—are not
diverse enough to lead to different prediction performances
between models. To overcome this, we synthesize a new, di-
verse set of stimuli by pitting model against model and gen-
erating “controversial” stimuli (Golan, Raju, & Kriegeskorte,
2020) for use in future experiments.

Model architectures to predict LC responses
We sought a computational model that could predict OG re-
sponses from a sequence of images. We considered three
classes of models (Fig. 1b): 1) a simple spatiotemporal model,
2) a “black-box” DNN model treated as a function approxima-
tor, and 3) a DNN model with a connectome-inspired archi-
tecture. Within each class of DNN models, we evaluated a
population of models that varied in hyperparameter values.

Spatiotemporal receptive field model

Similar to previous modeling in the primate retina (Pillow et
al., 2008), we first identified the spatiotemporal receptive field
(STRF) model—implemented as a generalized linear model
(GLM)—for each OG. To account for direction selectivity, we
used two linear STRFs whose ReLU outputs were linearly
combined (i.e., a cascade model).

Data-optimized black-box DNNs

We designed black-box networks purely for accurate predic-
tion. Each consisted of 3 convolutional layers with residual
connections and we used either 3-D kernels or a small LSTM
network to model temporal dynamics; in the case of the LSTM,
the last hidden state was mapped to each OG. We varied the
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Figure 2: Model predictions a. Predicted responses (color)
and real, held-out responses (black) to a looming stimulus. b.
Held-out R2 values for each DNN model. Each dot denotes a
single OG, and lines denote means.

number of convolutional filters, kernel sizes, and number of
hidden layers in the LSTM network to obtain a population of
models.

Data-optimized connectome-inspired DNNs
We designed connectome-inspired models whose architec-
ture reflected the anatomy and neuronal connectivity of the
highly-organized optic lobe. These models contained convo-
lutional layers to reflect the three main optic lobe regions–
lamina, medulla, and lobula–as well as more granular sub-
regions. The number of filters and kernel sizes were chosen
to match the number of neuron types at each region based on
the FlyWire connectome (Flywire Consortium, 2024); tempo-
ral dynamics were captured with 3-D kernels or small LSTMs
in putative regions that integrate temporally. We considered a
population of models by varying kernel sizes and pathways.

Results
To train and evaluate these proposed models, we curated a
dataset of visual stimuli and OG responses comprising data
from four different studies (Turner, Krieger, Pang, & Clandinin,
2022; Cowley et al., 2023; Städele, Keleş, Mongeau, & Frye,
2020; Klapoetke et al., 2022). Each model took as input a se-
quence of 30× 30 pixel images (representing the ∼900 om-
matidia of the retina) from the past 600 ms of visual history
of the right optic lobe. OG responses were calcium imaging
traces of head-fixed fruit flies viewing stimuli presented on a
projection screen. We computed a held-out test R2 (taken
across all held-out stimuli) via cross-validation (Fig. 2).

We found that the best black-box model (mean R2 = 0.55
across all OGs) outperformed the best connectome-inspired
model (mean R2 = 0.44). The STRF model, with its two
filters, performed poorly (mean R2 = 0.02). Responses of
LC25, whose neurons are thought to detect complex bar mo-
tion (Klapoetke et al., 2022), were the best predicted for both
the best black-box model (R2 = 0.81) and best connectome-
inspired model (R2 = 0.78), whereas LC24 (black-box) and
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Figure 3: Novel stimuli a. Black-box model-optimized pre-
ferred stimulus for LC15. b. Connectome-inspired model-
optimized preferred stimulus for LC15. c. Predicted re-
sponses to preferred stimuli. d. Predicted responses
to the controversial stimulus. e. Controversial stimulus
that maximizes the disagreement between models for LC15
(connectome-inspired − black-box).

LC22 (connectome-inspired) responses were the worst pre-
dicted (R2 ≈ 0), likely because these LC types had less data
than other LCs. We suspect that LC25 was best predicted
because the stimulus set was largely biased for moving bars
(ideal for identifying tuning of bar detectors) but inadequate for
identifying other feature preferences present in natural vision.

The preceding model classes are all data-driven–i.e., op-
timized to best fit recorded neuron activity. In the future,
we plan to investigate the predictive performance of task-
optimized models of both the black-box (Cowley et al., 2023)
and connectome-constrained (Lappalainen et al., 2023) vari-
eties.

Novel stimulus generation
We used our DNN models to identify the preferred stimulus
(i.e., the one that maximizes an OG’s response) for each LC
neuron type. To find these maximizing stimuli, we took a
greedy approach by sequentially selecting the stimulus im-
age for a given time frame that maximized the model’s out-
put and then continued to the next frame. For LC15, the most
predictive black-box DNN identified a stimulus which promi-
nently features black, laterally moving vertical bars (Fig. 3a),
consistent with LC15’s detection of bar motion (Klapoetke et
al., 2022). Interestingly, the preferred stimulus identified by
the most predictive connectome-inspired DNN also had ver-
tical lines but these were both light and dark (Fig. 3b). This
motivated us to find a “controversial” stimulus in which the
black-box and connectome-inspired models differed the most
in their predictions (Fig. 3e). These controversial stimuli are
highly informative: by comparing model predictions and real
responses to these stimuli (collected in future experiments),
we can determine the more accurate model.
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