
Delineating the set of faces perceived as natural in the Basel Face Model

Veronica Bossio Botero (vb2516@cumc.columbia.edu)
Columbia University, 3227 Broadway
New York, NY 10027 United States

Wenxuan Guo (wg2361@columbia.edu)
Columbia University, 3227 Broadway
New York, NY 10027 United States

Jasper JF van den Bosch (J.F.VanDenBosch@leeds.ac.uk)
University of Leeds,

LS2 9JT Woodhouse, Leeds, United Kingdom

Nikolaus Kriegeskorte (nk2765@columbia.edu)
Columbia University, 3227 Broadway
New York, NY 10027 United States



Abstract

The Basel Face Model (BFM) provides an important tool
for human face perception research, enabling the gener-
ation of realistic face images from a latent space of 3D
shape and texture defining variables. The latent space
is designed as an isotropic normal distribution reflecting
the distribution of the 200 human faces whose 3D scans
formed the basis of the BFM. However, this distribution
does not reflect which of the faces look like natural hu-
man faces to people. We collected binary judgements of
the naturalness of BFM faces and offer a model that pre-
dicts the probability that any BFM face will be judged as
natural. This model contributes to our understanding of
human face perception and will be useful to face percep-
tion researchers looking to sample natural-looking BFM
faces.
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Introduction
Principal Component Analysis (PCA)-based 3-dimensional
morphable models (3DMMs) have been widely applied in face
perception research as a method to generate stimuli that cap-
ture the distribution of real human faces (Gerig et al., 2018;
Egger et al., 2020; Walker & Vetter, 2016; Jozwik et al., 2022).
Although the latent space of BFM is modeled as an isotropic
Gaussian distribution, the Gaussian density does not provide
a reliable indication of the subset of faces that look natural to
people. To experience this, see Fig.1, left. In order to under-
stand face perception and also to be able to sample natural-
looking faces, it is desirable to delineate the subset of natural-
looking faces within BFM. We performed online behavioral ex-
periments in which human subjects gave binary judgments of
face naturalness. We offer a probabilistic model that assigns a
probability between 0 and 1 to each location in the BFM latent
space, predicting the probability that the corresponding face
will be judged as natural-looking. This approach promises
not only to enrich our understanding of how humans discern
natural from unnatural faces but will help researchers sample
natural-looking faces from BFM.

Behavioral Experiment
Participants were presented with one synthetic face at a time
and answered “yes” or “no” to the question: “Could there be
a human face that looks like this?”. Each face in the stim-
ulus set varied along a single principal component, with the
rest of the dimensions set to zero. We sampled faces whose
euclidean distance to the average face ranged from 0 to 40
units in both (positive and negative) directions. A subset of
200 faces was viewed by every participant twice, which al-
lowed us to evaluate the inter- and intrarater test-retest reli-
ability. Additionally, each subject viewed a unique subset of
600 faces. In total, each participant judged 1000 faces in
an online experiment conducted using Meadows (meadows-
research.com) and Prolific.

Mahalogistic models
We introduce a model class that uses a scaling factor σi for
each PC-dimension i of BFM to predict the binary judgements.
The unnaturalness of each face is defined as the Mahalanobis
distance from the origin of face space using a diagonal co-
variance matrix defined by parameters σi. The Mahalanobis
distance of each face from the origin provides the input to a
logistic regression model. We define the probability that a face
with latent representation ααα will be judged as natural by a ran-
dom observer, by:
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Additionally, we assume σi = f (i) where i is the PC-index and
f is a smooth function of i. We use the following set of candi-
date smooth functions for the computation of the Mahalanobis
distance:

f (i) ∈ {mi, mi+b, mik, mik +b} (3)

Finally, we introduce a parameter to account for the probability
of motor error (pressing the unintended button independent of
stimulus):

perr
nat(ααα) = perr · [1− pnat(ααα)]+ [1− perr] · pnat(ααα) (4)

We fit each of the four models to the “unique” face trial data
using likelihood maximization (parameters: m, k, b, D0, perr
for the full model). We included a 4-fold cross-validation pro-
cedure on the set of subjects. For statistical comparisons on
the performance of the different models, we bootstrap resam-
pled the data 1500 times. Additionally, we included a Gaus-
sian Kernel Density Estimator as a reference model. This
model’s non-parametric approach, allows us to estimate the
data’s joint distribution, capturing its inherent structure and
variability. This delineates a noise ceiling, benchmarking the
performance of the rest of the models.

Results
In Fig. 2, we present heatmap visualizations of model pre-
dictions for idealized latent vectors. Specifically, these pre-
dictions are for the set of faces that are zero everywhere ex-
cept for one PC at a time. The isoprobability lines delineate
the regions in the latent space where faces are more or less
likely to be perceived as natural. For both shape and texture
trials, the Mahalogistic model defined by the variance func-
tion f (i) = mik +b closely aligns with empirical observations.
Our statistical analyses confirm that the mik +b Mahalogistic
model predicts the naturalness judgement data significantly
better than every other Mahalogistic model for both shape
and texture-varying faces. Moreover, the performance of this
model exceeds that of the noise ceiling, notably outperforming
the Gaussian KDE model in explaining the data (Fig. 3A, B,
right). Finally, to give a clearer picture of what “natural” faces



Figure 1: The left panel shows a set of example faces and their probability densities according to the Gaussian PDF defined by the BFM. Each face corresponds to a latent representation
that is zero for every PC except for PC10 and PC100. The color-coded circles denote the the iso-probability-density contours. Faces that lie on the same circle are assumed to be
equally likely by the model. The right panel shows the same set of example faces, this time with the predicted probability according to the mik +b Mahalogistic model that the face will
be judged to be natural. Iso-probability contours for the distribution learned on the basis of human judgements are shown. Faces that lie on the same line are predicted by the model
to be equally likely to be judged as natural by a random observer.

look like according to the mik + b model, we overlay a selec-
tion of faces—those varying only along PC10 and PC100—on
top of the model’s iso-probability contours (Fig. 1B).

Figure 2: Each contour plot illustrates the probability that a face is perceived as natural
by a random observer, as predicted by each of the candidate models. The x-axis rep-
resents the principal components (PCs), with the idealized latent faces characterized by
zeroes everywhere except for a single PC. The y-axis indicates the value of the latent
representation for the given PC. The last panel shows the behavioral data. Each dot
represents one binary judgement by a participant to the corresponding face.

Figure 3: Each square on the plot represents the log-likelihood of the human perceptual
judgment data given each candidate model (A, B; left). Error bars indicate the standard
error of the mean (SEM) derived from 1,500 bootstrap resamples. Statistical significance
is denoted as follows (A, B; right): A solid circle linked to open circles indicates that the
model corresponding to the solid circle has a significantly higher log-likelihood compared
to the models aligned with the open circles.
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