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Abstract

Recurrent neural networks (RNNs) are widely used in neu-
roscience to model neural dynamics and learn tasks with
temporal dependencies, and have been shown to utilize
complex dynamical structures. However, it is still un-
known how such structures emerge during training. Here,
we aim to develop a better theoretical understanding of
learning dynamics in RNNs by analyzing their linear coun-
terparts analytically. Despite the absence of nonlinearity,
deep linear networks are known to exhibit nonlinear learn-
ing dynamics. We show that the effect of exploding gra-
dients acts as an effective regularizer of both recurrent
and input-output weights and derive exact solutions of
the nonlinear learning dynamics of the input-output con-
nectivity modes, verified in simulation. Finally, we study
the loss landscape and gradients for data with different
temporal structures, revealing (un)learnable data dynam-
ics and their solutions, criteria for generalization across
trajectory lengths, and the existence of a bifurcation lead-
ing parameters towards either the global minimum or
suboptimal solutions. Our work provides a first ana-
lytical treatment of the relationship between temporally-
evolving data and learning dynamics in linear RNNs and
builds a basis from which we can better understand how
complex dynamic behavior emerges in cognitive models.
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In the age of growing interdisciplinary exchange between
cognitive neuroscience and machine learning, recurrent neu-
ral networks (RNNs) have become a popular choice for cog-
nitive models of neural dynamics, as they not only replicate
recurrent dynamics recorded in animals but are also capable
of performing cognitive tasks with temporal dependencies. It's
also been shown that RNNs reuse dynamical motifs, such as
line attractors and limit cycles, for similar computations across
different sets of tasks (Driscoll, Shenoy, & Sussillo, 2022).
However, despite their widespread use and known complex
computational abilities, there is still limited theoretical under-
standing of these models and how their underlying functional
structures emerge.

One line of previous work has focused on using deep lin-
ear networks to analyze learning dynamics (Saxe, McClel-
land, & Ganguli, 2014, 2019). Although unable to solve nonlin-
ear problems, these networks exhibit complex nonlinear learn-
ing dynamics and are analytically tractable, providing a useful
framework for theoretical investigation. However, the analyti-
cal treatment of learning dynamics in linear networks has pri-
marily remained in the domain of feedforward networks.

In this work, we're interested in studying the learning dy-
namics of linear RNNs to better understand the influence of
temporal data on learning in recurrent cognitive systems.

Model and Results

We consider a RNN parameterized by matrices W, €
RN>Ne W, € RNeN W, € RM*Ni with a hidden state h, €

RM: that receives an input x; € RM at each timestep ¢ and
updates its hidden state, until the final timestep T where it
produces an output 7 € R™. We additionally initialize /; as
a vector of zeros, yielding
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Our goal is to train the network on a set of P trajecto-
ries {x1,p,X2p,... ,xT7p,yT"p}5:1 by gradient descent on the
squared error £ =Y, |lyr, —Wy(X, W~ Waxip)||2.

We make several assumptions to simplify our form, namely:
(1) inputs are uncorrelated and whitened, with mean 0; (2) the
data correlation matrix of the input x; at timestep ¢ and final
output yr has constant left and right singular matrices across
all timesteps such that 2% = 5:1 yrx, = UyS,V, for all t;
(3) weight matrices Wy, W;,, W, are diagonalizable at initializa-
tion by some set of orthogonal matrices and the left and right
singular matrices Uy, V, of the data correlation matrix. The
gradient updates can then be written in terms of the singular
values of the data correlation matrices over time sq;, Which
are decoupled for each dimension «,
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which arise from gradient descent on the energy function
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where cq, by, aq are the ol diagonal entries of the diagonal-
ized matrices W,, W, W, respectively, also known as con-
nectivity modes. We refer to b as the recurrent connectiv-

ity mode and ac as the input-output connectivity mode. To
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Figure 1: Learning dynamics of input-output connectivity
modes in a linear RNN. The colored lines are simulations for
different ratios of B, : B, and dashed lines are the correspond-
ing theoretical predictions for a trajectory of 7 = 10.
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Figure 2: Loss landscape and gradient vector field of con-
nectivity modes for different data singular value dynam-
ics. Low to high loss corresponds to blue to red coloring and
the global optimum is marked with a yellow star.

ease notation, we omit specifying o in the rest of the paper,
although note that all terms still refer to a particular singu-
lar value dimension . A first observation from the gradient
functions is the effect of the well-known problem of vanishing
(exploding) gradient, given by |b| < 1 (|b| > 1) as T — oo. For
our analysis, we consider the case where |b(0)| < 1, as its
counterpart is unstable. Then, as T — oo, the energy function
converges to

T
E :;(; si(si—2cb 'a)) — %czaz(liib + lij—b —2)
In this form, the second term drives the connectivity modes
a,b,c towards 0, and specifically pushes b away from 1, —1.
This interplay leads to an effective regularization and sparsi-
fication of the network weights by keeping recurrent connec-
tivity modes between the range of —1,1 and favoring input-
output connectivity modes centered around 0. For large T, b
will generally not increase to become greater than one, unless
a or ¢ are close to 0. The space of learnable (linear) functions
is thus constrained to data that can be modelled with |b| < 1.
As a first attempt at deriving exact solutions for the learning
dynamics of the RNN connectivity modes, we assume a(0) =

c(0). Letting By =Y. b7 s, Bp = X1 2T D 1= L, the
solution for the learning dynamics of ac are:
21Bs /T
alt)elr) = e
Bs/(a(0)c(0)) — By + P/,

We verify this solution with simulations in Fig. 1 without updat-
ing b for different ratios of By : Bp.

Finally, we visualize the loss landscape and gradient vector
field for b and ac for different data singular value dynamics s;.7

and trajectory lengths in Fig. 2. We consider cases where
s1.7 are either constant (s; = 0.7), expanding (s; = 0.77-1,
or contracting (s, = 0.9"), for T = 10 or T = 50. These cases
correspond to output yr being a sum of inputs x1.7, where x; is
weighted by sq for every singular value dimension. Thus, the
expanding s case corresponds to weighting x; in ascending
order, contracting in descending, and constant equally.

For constant s; = 0.7, the global minimum exists at b =
1,ac = s = 0.7, as b remains constant at 1 and ac learn the
appropriate ‘weighting.’ Instead, for expanding s;, the global
minimum is found at b = sy = 0.7,ac = 1, as the trajec-
tory of s corresponds to the evolution of b given by b7 . In
this case, b ‘weights’ inputs in ascending order, with ac re-
maining constant at 1. In both settings where data singu-
lar value dynamics are matched to RNN dynamics for any
trajectory length T', the global minimum is the same for all
trajectory lengths, indicating that learned optimal parameters
should generalize for different trajectories. Interestingly, we
also observe a bifurcation around b = 0, which pushes b to-
wards either positive or negative values and subsequently, op-
timal or suboptimal solutions.

Finally, in the case of s contracting from s; = 0.9, the global
minimum |sb_ ~1.11 ac_s1 ~ 0.359 for T = 10 and

b=+ =1.11 ac—s1 ~ 0.00515 for T = 50. In this set-
ting, b produces contracting ‘weighting’ by being greater than
1 and scaled according to s;. Because the ‘weighting’ b per-
forms at each timestep is dependent on trajectory length, ac
scales the contraction of b according to T to match that of the
data singular values. Therefore, for small T, learned optimal
parameters will not perfectly generalize to trajectory lengths
that differ substantially, as the value of ac is dependenton T'.

From these initial case studies, we predict that for large tra-
jectories T, (1) all constant data singular values s are learn-
able, as b =1 and ac = s, (2) most, if not all, s expanding
according to s* for s > 1 or s7~* for s < 1 are learnable, and
(3) for the most part, contracting s are not learnable, as their
solutions lie outside of |b| < 1, which is unstable. We also
predict that an optimal network’s ability to generalize to differ-
ent trajectory lengths will depend critically on whether the data
singular value dynamics are dependent on trajectory length in
a way that differs from the RNN connectivity modes.

Conclusion

We present here an initial theoretical study of the learning dy-
namics of linear RNNs and analyze how the temporal struc-
ture of data influences learning. We derive equations for the
gradients of different parameters and the energy function in
terms of the data singular values, as well as exact solutions
for the learning dynamics of input-output connectivity modes
which we verify in simulation. Our analysis of the loss land-
scape and gradient vector field reveals surprisingly complex
dynamics which differ from those of linear feedforward net-
works, and lead us to make predictions about the learnability
and generalizability of data with different temporal properties.
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