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Abstract
Continuously learning new information is a fundamental
ability of animals but a challenging problem for conven-
tional deep neural networks (DNNs), which suffer from
catastrophic forgetting. Unlike DNNs, whose early layers
change depending on training images, the brain’s early
visual pathway has innate Gabor-like receptive fields that
are stably maintained throughout a lifetime. Here, we
demonstrate that fixing early layers of DNNs using Gabor
filters, resembling the primary visual cortex (V1) cells’ re-
ceptive fields, enables continual learning under dynamic
environments. We first showed that networks with fixed
Gabor filters maintained the previous performance even
when sequentially trained on a completely different image
domain, alleviating catastrophic forgetting. Moreover,
representation analysis revealed that fixed Gabor filters
enabled networks to have similar representations across
different domains, which may enable networks to adapt
better to continuous learning. Together, Gabor filters in
early layers could serve as key architectures for continual
learning, highlighting the functional significance of stable
early visual pathways in brains.
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Introduction
Continuously learning new information is a fundamental ability
for animals (Kudithipudi et al., 2022) but a challenging prob-
lem for conventional deep neural networks (DNNs). When
DNNs are trained on images with different distributions, they
lose previous performance, referred to as catastrophic forget-
ting (McCloskey & Cohen, 1989). However, the mechanisms
responsible for such a functional difference between the two
systems remain elusive.

An important clue may lie in the anatomical distinction be-
tween brains and DNNs. Specifically, DNNs’ early layers
are randomly initialized (He, Zhang, Ren, & Sun, 2015) and
trained depending on the dataset (Krizhevsky, Sutskever, &
Hinton, 2012). This can be an unfavorable characteristic
for continual learning since subtle changes in the early layer
may lead networks to forget prior information (McCloskey &
Cohen, 1989). On the other hand, the brain’s early visual
pathway exhibits Gabor-like receptive fields (Figure 1) even
before eye-opening (Gödecke & Bonhoeffer, 1996; Niell &
Stryker, 2008; Paik & Ringach, 2011; Song, Jang, Kim, & Paik,
2021), which tends to remain stable throughout visual experi-
ences (Gödecke, Kim, Bonhoeffer, & Singer, 1997; Crist, Li,
& Gilbert, 2001). Thus, the early visual pathway serves as a
common basis for processing various images during a lifetime.

Here, we hypothesized that the fixed early visual circuitry
in the visual system facilitates robust continual learning. To
test this, we applied fixed Gabor filters in the early layer of
the convolutional DNN and sequentially trained them when the
image domain changes. As a result, we showed that networks
with fixed Gabor filters maintained previous performance and
representations under dynamic environments.

Our model

Figure 1: Our model (DNN with fixed Gabor filters). (a) Model-
ing V1 receptive fields as Gabor filters (b) Incorporating fixed
Gabor filters in the first layer and sequentially trained networks

To explore the functional role of a stable early visual path-
way, we modeled receptive fields of V1 neurons (Ringach,
2002) as Gabor filters (Figure 1a). Subsequently, we intro-
duced them as filters of the first convolutional layer of DNN
(Krizhevsky et al., 2012) to simulate the human visual sys-
tems (Figure 1b). We then trained networks using images
whose domain changes over time. Particularly, we used a
public dataset (Li, Yang, Song, & Hospedales, 2017) contain-
ing seven common classes with four distinct domains: Photo,
Art, Cartoon, and Sketch.

Results

Fixed Gabor filters enable networks to maintain
previous performance

We first applied sequentially training using Photo and Sketch
domains, which show the highest difference in low-level statis-
tics such as spatial frequency spectrum. We showed that
fixed Gabor filters enable networks to maintain previous per-
formance under a domain change (Figure 2). For conven-
tional DNNs, when networks were sequentially trained on a
different domain (Sketch), the DNNs entirely lost the first do-
main’s performance (Photo) to the chance level, demonstrat-
ing catastrophic forgetting (Figure 2b, top; one sample t-test,
NS: P=0.07). On the contrary, DNNs equipped with fixed Ga-
bor filters robustly maintained their previous performance (Fig-
ure 2b, bottom; one sample t-test, ***: P<0.001). The accu-
racy loss of the Photo images was significantly lower in DNN
with fixed Gabor filters than in conventional DNNs (Figure 2d;
paired t-test, ***: P<0.001).

Then, we applied the same sequential training using all do-
main pairs to confirm the above is not a dataset-specific effect,
applicable only to Photo and Sketch images. We trained net-
works using 12 unique pairs among four domains and mea-
sured the accuracy loss for each pair. As a result, networks
with fixed Gabor filters better maintained the initial perfor-



Figure 2: DNN+Gabor maintains previous performance (a)
Sequential training of DNN and DNN+Gabor (b) Accuracy for
Photo images of both networks (c) Different accuracy mainte-
nance of DNN and DNN+Gabor (d) Smaller accuracy drop in
DNN+Gabor

mance for most domain pairs (paired t-test, P<0.05 for nine
pairs).

Fixed Gabor filters enable networks to have similar
representations across different domains

To explain how our model could maintain the performance, we
analyzed representations of Photo and Sketch images (Fig-
ure 3). We found that fixed Gabor filters enable networks to
have similar representations across different domains. Initially,
we measured the activations of the first fully connected layer
(fc6), which is known to encode categorical information (Bao,
She, McGill, & Tsao, 2020), of DNN and DNN with fixed Ga-
bor filters by feeding Photo and Sketch images. Then, we
conducted dimension reduction using t-SNE (Figure 3a). We
hypothesized that the same classes across different domains
(e.g., Photo dogs and Sketch dogs) would have similar rep-
resentations clustered together in the latent space of DNNs
with fixed Gabor filters but not of DNNs (Figure 3b). We ex-
pected this clustering would help DNNs with fixed Gabor fil-
ters to maintain their previous parameters and performance in
continual learning.

As a result, we noticed that the same classes, represented
as identical colors, tend to cluster better in the latent space
of DNN with fixed Gabor filters than of DNN (Figure 3d). We
then evaluated this clustering tendency using the silhouette
index (Kaufman & Rousseeuw, 2009), in which higher values
indicate better clustering (Figure 3c). We showed that DNNs
with fixed Gabor filters demonstrated a higher silhouette index
than DNNs, confirming the better clustering of classes (Fig-
ure 3e; paired t-test, ***: P<0.001). These results imply that

Figure 3: Representations of different domains and classes
(a) Dimension reduction using t-SNE of activations of fc6
layer (b) Our hypothesis that classes will be clustered in
DNN+Gabor (c) Evaluating clustering with Silhouette index
(d) Clustering results for classes across different domains (e)
DNN+Gabor shows better clustering of same classes across
different domains

the same classes have similar representations in our model,
which can eventually lead to better adaptation in continuous
learning scenarios.

Conclusion
In summary, we showed that fixed Gabor filters enable robust
continual learning by maintaining the performance of an initial
domain after training a new domain. We also showed that
this continuous learning ability may be caused by generating
similar representations across various image domains in our
model. These results highlight the importance of fixed early
layers in continuous learning scenarios and underscore the
functional significance of hard-wired early visual pathways in
brains.
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