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Abstract

Recent work has started exploring the possibility of using
self-supervised deep learning as a framework for mod-
eling human visual development. Here, we provide a
first step in that direction, by examining learning trajec-
tories of a deep feedforward neural network, ResNet50,
as it is trained on ImageNet using self-supervised con-
trastive learning. We ask if the learning trajectories show
developmental signatures similar to those observed in
the primate visual system. We show that representa-
tions change rapidly during the first few training epochs,
and then stabilize. Like in the primate visual system,
visual representations stabilize faster in early than in
deep layers. Within- and between-category informa-
tion emerge simultaneously, consistent with the notion
that self-supervised contrastive learning promotes both.
Our work provides preliminary support for using self-
supervised deep learning to model human visual devel-
opment, which opens up the possibility of systematically
testing how developmental constraints shape visual rep-
resentations.
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Deep neural networks as models of visual
representation learning

Deep neural networks are popular system-level computational
models of the primate visual system. Deep neural networks
rival human performance on image classification tasks and
predict brain activity across primate ventral visual cortex dur-
ing image viewing (He, Zhang, Ren, & Sun, 2015; Yamins
et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Gigli &
Gerven, 2015). Initial modeling efforts relied on category su-
pervision for visual representation learning, but recent years
have seen a shift to self-supervised learning objectives. Self-
supervised approaches are thought to more closely simulate
human learning goals during development, and are on par
with category supervision when it comes to predicting brain
activity in adults (Zhuang et al., 2021; Konkle & Alvarez,
2022). Given these successes, recent work has started ex-
ploring the idea of using self-supervised visual representation

learning as a framework for modeling human visual develop-
ment (Zaadnoordijk, Besold, & Cusack, 2022; Mur, 2023).
Here we provide a first step in that direction, by character-
izing representational learning trajectories of deep neural net-
works during self-supervised visual learning, and by exam-
ining if they show developmental signatures consistent with
primate visual development.

Characterizing learning trajectories of deep
neural networks

We focus on a feedforward convolutional neural architec-
ture, ResNet50 (He et al., 2015), and train multiple instances
of this architecture (Mehrer, Spoerer, Kriegeskorte, & Kietz-
mann, 2020) for 200 training epochs on ImageNet using self-
supervised contrastive learning (He, Fan, Wu, Xie, & Girshick,
2020; Chen, Fan, Girshick, & He, 2020). We characterize
model learning trajectories by presenting a test image set af-
ter each training epoch. The test set consists of 96 object
images from a range of real-world categories, including faces
and animals (Kriegeskorte et al., 2008). After each training
epoch, we extract response patterns to the test images from
the last layer of the first and last convolutional block (’layer
1’ and ’layer 4’, respectively), and compute representational
dissimilarity matrices (RDMs), which summarize the image in-
formation carried by the response patterns. We used corre-
lation distance as a dissimilarity measure. The RDMs across
epochs form a representational learning trajectory. These tra-
jectories allow for detailed tracking of the learning dynamics.
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Figure 1: Representational change from one training epoch to
the next for an early (layer 1) and a deep network layer (layer
4). Results are averaged across 10 network instances.



Rapid representational changes early in
learning

Based on prior neuroscience work (Espinosa & Stryker, 2012;
Livingstone et al., 2017), we expect to see rapid representa-
tional changes early in learning, followed by representational
stability later in learning. We test this hypothesis by assessing
representational change from one training epoch to the next.
To do so, we correlate RDMs of consecutive training epochs,
and plot these correlations as a function of training time. This
allows us to observe the rate of representational change as
training unfolds. Results displayed in Figure 1 indeed show
rapid representational changes in the first few training epochs
for both early and deep network layers, after which represen-
tations stabilize. The observed pattern of representational
change is consistent with prior modeling work (Achille, Ro-
vere, & Soatto, 2019; Hong, Yamins, Majaj, & DiCarlo, 2016;
Zhuang et al., 2021) and confirms predictions from the neuro-
science literature.

Early layers settle more rapidly than deep
layers

Prior neuroscience work also predicts that representations
in early network layers, which are thought to correspond to
early visual cortex, stabilize more rapidly than representations
in deep network layers, which are thought to correspond to
higher-level visual cortex (Espinosa & Stryker, 2012; Living-
stone et al., 2017; Seibert, 2018; Gigcli & Gerven, 2015).
Figure 1 indeed suggests that representations stabilize more
rapidly in layer 1 than in layer 4.
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Figure 2: Within- and between-category information as a func-
tion of training time. Results are averaged across 10 network
instances. Shaded areas show standard deviation across net-
work instances.

Within- and between-category information
emerge simultaneously

While the neuroscience literature may not provide clear pre-
dictions about the relative timing of within- and between-
category information during visual learning, behavioral pres-
sures exist for both (Grill-Spector & Weiner, 2014), and self-
supervised contrastive learning is expected to promote the
emergence of within- as well as between-category informa-
tion (Konkle & Alvarez, 2022). Figure 2 shows how within-
and between-category information evolves over learning for
two categories of longstanding behavioral relevance, faces
and animals. We extracted within- and between-category dis-
similarites from the RDMs and averaged across all within-
and all between-category image pairs. Results indicate that
within- and between-category information arise simultane-
ously in both early and deep layers. Interestingly, the aver-
age dissimilarities in layer 4 are higher for between-category
than within-category image pairs. This trend was not ob-
served in layer 1. This suggests that over time, deeper layers
prioritize distinguishing between category members and non-
members over doing so between different category members,
while early layers have less of a preference.

Conclusion

Learning trajectories of deep neural networks show develop-
mental signatures consistent with those observed in the pri-
mate visual system. Signatures include rapid representational
changes early in learning, and more rapid stabilization of rep-
resentations in early than deep network layers. Our results
further indicate that within- and between-category informa-
tion emerge simultaneously, suggesting they may both arise
from a general push for distinguishing object images. Our
findings provide preliminary support for using self-supervised
deep learning as a framework for modeling human visual de-
velopment.
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