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Abstract:

The human brain can naturally identify and track 
individual sounds even amidst a cacophony of 
overlapping noises—a phenomenon known as the 
"cocktail party effect." However, computational 
algorithms and machine learning approaches struggle to 
perform single-channel blind source separation (BSS) of 
auditory signals. We present Density Networks (DNs), a 
novel class of recurrent neural network inspired by the 
auditory system that demonstrates one-shot BSS of 
auditory signals. DNs have artificial inner hair cells 
(IHCs) that connect to layers of artificial neurons with 
tonotopy, and feedback and feedforward inhibitory and 
excitatory mechanisms that facilitate plasticity and 
learning at multiple timescales. Each structure in the 
network has distinct learning rules and spontaneously 
coordinates with other actors to produce an emergent 
output. Therefore, network behavior is completely 
interpretable in real-time by monitored behaviors 
ranging from synaptic weight changes and firing rates to 
population-level neuronal synchrony. This biologically 
inspired algorithm learns and then follows new sounds 
within 300 milliseconds, akin to human auditory 
performance. DNs also outperformed two state-of-the-art 
single-channel BSS separation methods—improving 
sound separation quality by at least 160%. Unlike 
popular deep learning algorithms DNs are unsupervised, 
making them suitable for lifelong learning in real-world 
sensory environments. 
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Introduction 

The human auditory system can isolate sound sources 
in complex environments within milliseconds of 
exposure to new stimuli (the cocktail party effect) (King 
et al., 2018). And while binaural hearing does improve 
human performance, monaural sound source 
identification is possible for individuals with healthy 
hearing. However, even the state-of-the-art (SOTA) 
machine learning approaches struggle to perform 
unsupervised, monosource BSS (Agrawal et al., 2023). 
Deep learning methods, while powerful, demand 
extensive data for training and face challenges in 
adapting to diverse environments (Yiu & Low, 2018). 
Density Networks (DNs) present an alternative, 
achieving real-time BSS via unsupervised continuous 
learning with minimal data. This approach addresses 
the gaps left by conventional machine learning and 
deep learning methods. 

DNs are a novel class of unsupervised biologically 
plausible neural networks inspired heavily by the 
functioning of the auditory system (Kunchur, 2023). 
Consisting of four layers each with distinct learning 
behaviors (Fig. 1), DNs have recurrent connections at 
both the local (intralaminar) and the global 
(interlaminar) levels. DNs have membrane potential 

dynamics, similar to biological neurons that achieve 
short-term (ST) and long-term (LT) potentiation using 
AMPA and NMDA receptors (Purves et al., 2004), 
respectively (Fig. 2). In combination these behaviors 
enable DNs to rapidly learn and recognize novel 
harmonic sounds, even in acoustically complex 
environments (Fig 3b).  

To assess performance, we designed a sound 
separation task by mixing musical instrument solos with 
naturalistic background sounds. We evaluated DN 
output quality against two SOTA approaches: Non-
Negative Matrix Factorization (NMF) (López-Serrano et 
al., 2018) and single-channel Independent Component 
Analysis (ICA) (Calderón-Piedras et al., 2015) for BSS. 
DNs outperformed both NMF and ICA, enhancing 
sound separation quality by at least 160%. 

Methods 

Model Description:  

The input region of DNs (Fig.1a) is a set of hundreds of 
tonotopically-organized oscillator neurons designed to 
mimic the mechanical gating principles of cochlear 
IHCs (Hudspeth, 2014). Each artificial oscillator neuron 
produces a signal proportional to the amplitude of the 
neuron’s characteristic frequency in the input signal, 
emulating IHCs that generate graded potentials in 
afferent neurons (Fig. 1b).  

The IHC-analogue oscillator layer connects to the 
tonotopically-organized fundamental frequency layer 
(Fig. 1c), resembling multisynaptic pathways from the 
cochlear nucleus to the primary auditory cortex. This 
region maps to the harmonic feature extraction layer 
(Fig. 1d,e) akin to the auditory sub-fields that are highly 
selective for harmonic sounds. This scheme is inspired 
by and also observed in the human auditory system 

(King et al., 2018). A feedback system among these 
components, resembling descending connections, 
facilitates short-term memory and ensures fidelity of 
signal tracking.  

To enable rapid yet generalizable learning, DNs 
incorporate synaptic weighting dynamics at multiple 
timescales modeled from in vivo AMPA and NMDA 
receptor behaviors (Purves et al., 2004) (Fig. 2). A 
neuron rapidly adjusts the weights of its AMPA-inspired 
gates at each of its dendritic synapses in response to 
every received input, resulting in recognition of already-
learned input signal patterns within 50-100 ms of 
stimulus exposure and consolidation of novel patterns 
within 100-500 ms (Fig. 3a). The NMDA-inspired gates 
open only after a suprathreshold amount of AMPA-
trafficked signal accumulates, triggering persistent 
changes in neuronal activity and synaptic structure to 
refine familiar patterns and learn new ones.  



 

Fig. 1: Schematic of DN regions (see text for details). 

 

Fig. 2: Schematic of AMPA/NMDA receptor dynamics. 
(a): AMPA gates are open by default and admit 
incoming short-term (ST) charge from connected 
neurons. (b): ST charge accumulates and decays 
proportionally to total ST charge absorption. (c): 
Threshold is reached, allowing NMDA gate to open and 
receive long-term (LT) charge. (d): LT charge 
accumulation results in persistent AMPA gate 
expansion to enable more ST charge absorption. (e): 
Indicative equations guiding receptor dynamics. 

Benchmarking:  

To test sound separation quality, we conducted 
experiments by mixing musical instrument sounds from 
the GoodSounds dataset (Picas et al., 2015) with 
diverse natural sounds obtained from the Free 
Universal Sound Separation (FUSS) dataset (Wisdom 
et al., 2021). We manipulated the stimulus complexity 
by varying the number of overlapping environmental 
sounds in each stimulus, ranging from two to twenty, 
across ten levels of increasing difficulty signal-to-noise 
ratio (SNR) ranging from 6.02 dB (easiest) to -3.98 dB 
(most difficult). In total, we created a test set of 5,000 
audio stimuli each 4 seconds long with a sampling 
frequency of 16KHz. We evaluated the ability of DNs to 
isolate musical instrument sounds from background 
noises and compared the output with results obtained 

from NMF (López-Serrano et al., 2018) and single-
channel ICA (Calderón-Piedras et al., 2015). Quality of 
source separation was measured using the Scale-
Invariant Source-to-Distortion Ratio (SI-SDR) (Roux et 
al., 2019) where a higher score indicates a better 
separation of the sound sources. 

Results 

We computed source reconstruction quality over time 
and observed rapid improvement within the first 50-500 
ms of stimulus onset (Fig. 3a). This suggests 
performance resembling one-shot learning observed in 
human participants (Isnard et al., 2019). The average 
SI-SDR score on the 4-second musical clips with DNs 
was 5.35±0.11 [mean±s.e.m.]. This was significantly 
higher than NMF (0.46±0.08, p<0.001, z-test) as well as 
ICA (2.05±0.11, p<0.001, z-test) (Fig. 3b). DNs 
improved sound separation quality, on average, by at 
least 160% compared to either of the two methods. 
Interestingly, DNs outperformed both approaches 
across all noise levels except level 1 (the easiest case, 
Fig. 3b), underscoring the efficacy of DNs, especially at 
lower signal-to-noise levels.  

  

Fig 3: (a) Average DN source reconstruction quality 
across n=5000 stimuli as a function of time from 
stimulus onset to 2,500 ms (shaded region: s.e.m. 
across stimuli). The consistent, rapid improvement 
between 50-500 ms of stimulus exposure demonstrates 
one-shot BSS – a form of learning approaching reported 
human performance (Isnard et al., 2019). (b) Source 
reconstruction quality over n=5000 stimuli for NMF 
(gray), ICA (orange), and DNs (purple), with noise 
levels increasing along the x-axis. Error bars: s.e.m. 
Asterisks denote paired z-test for DNs vs NMF (gray) 
and DNs vs ICA (orange): ***: p<0.001. 

Conclusion 

Density Networks represent a new tool to model the 
links between micro-level neurobiological phenomena 
and macro-level learning behaviors, achieving success 
in the real-world task of unsupervised, monosource 
BSS. We are developing features to enhance the 
integration of working memory and long-term memory 
processes to expand to more complex stimuli and 
demonstrate lifelong learning.   
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