
Multi-stage Cortical Recurrent Circuit Implementing Normalization

Asit Pal (ap6603@nyu.edu)
Department of Chemistry, New York University

Center for Soft Matter Research, Dept. of Physics, New York University
NYC, NY, USA

Shivang Rawat (sr6364@nyu.edu)
Courant Institute of Mathematical Sciences, New York University

Center for Soft Matter Research, Dept. of Physics, New York University
NYC, NY, USA

David Heeger (david.heeger@nyu.edu)
Dept. Of Psychology, New York University

Center for Neural Science, New York University
NYC, NY, USA

Stefano Martiniani (stefano.martiniani@nyu.edu)
Department of Chemistry, New York University

Center for Soft Matter Research, Dept. of Physics, New York University
Courant Institute of Mathematical Sciences, New York University

Simons Center for Computational Physical Chemistry, New York University
NYC, NY, USA

Abstract

Communication between cortical areas is supported by
long-range reciprocal connections. Given feedback con-
nections’ hypothesized role in attentional modulation, it
is essential to develop a multistage network model of the
brain for studying attention and inter-area communica-
tion. Here, we present a dynamically stable hierarchical
recurrent neural circuit model with feedback that imple-
ments divisive normalization exactly at each stage of its
hierarchy. We consider a two-stage model (V1 and V4),
each stage receives input from the preceding area and
feedback from the subsequent area and the responses in
each area are normalized by local inhibitory signals. We
note that an increase in feedback from V4 to V1, ampli-
fies responses in both stages, with a more pronounced
increase in higher cortical areas (Fig.1), consistent with
experimental findings (Maunsell & Cook, 2002). Addi-
tionally, our model predicts that feedforward and feed-
back signals in the brain propagate via distinct frequency
channels, gamma and alpha frequencies respectively, in
line with empirical evidence (Van Kerkoerle et al., 2014;
Bastos et al., 2015). Furthermore, our model admits
a low-dimensional communication subspace (within and
across areas) and predicts that enhancing feedback im-
proves inter-areal communication, yet decreases within-
area communication (Fig.3). In summary, our hierarchical
model provides a robust and analytically tractable frame-
work for exploring normalization, attention, and inter-
areal communication.
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Multi-stage model
For each cortical area, the principal output response is given
by input gain × input drive + recurrent gain × recurrent drive
+ feedback gain × feedback drive, and the corresponding dy-
namical equation is given by,

τy1

dy1

dt
=−y1 +β ⌊z1⌋

+
1

1+ ⌊a1⌋
(W11⌊y1⌋+ γ W12⌊y2⌋) (1)

where y1 and y2 denotes the membrane potentials of neurons
in cortical areas V1 and V4, with ⌊y1⌋2, ⌊y2⌋2 representing
their respective firing rates approximated by the half-wave rec-
tified and squared membrane potentials (Carandini & Heeger,
1994). z1 denotes the input drive from the preceding corti-
cal area, and a1 is the inhibitory neuron, implementing divi-
sive normalization through modulation of recurrent excitation.
W11 is the recurrent weight matrix for V1, while W12 is the
inter-areal connectivity matrix from V4 to V1. β and γ mod-
ulate the relative input and feedback gains in the excitatory
(y1) and inhibitory (a1) populations. Normalization in our cir-
cuit model is achieved by the two modulatory neurons a and
u whose dynamics are prescribed by the following equations,

τa1

da1

dt
=−a1 +(1+a1)∗

√
⌊u1⌋+

g W12⌊y2⌋
⌊y1⌋

+α1
du1

dt

τu1

du1

dt
=−u1 +(b σ1)

2 +Wn1
(
⌊y1⌋2 ∗⌊u1⌋

)
(2)

where Wn1 is the normalization connectivity matrix (see
Eq. 3). b and g denote baseline values for the input and feed-
back gating variables. Division of vectors, and multiplication
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Figure 1: Effect of feedback-mediated attention on prin-
cipal neuron responses. Left: Lower cortical area (V1).
Right: Higher cortical area (V4). Increasing attention en-
hances cortical responses, with greater impact in higher corti-
cal areas.

denoted by ‘∗’, are element-wise. When γ and g are set to
unity, so that y1 and a1 receive identical feedback input, and
W11 has spectral radius ρ < 1, the steady-state response of
the principal neurons in V1 follows the normalization equation
exactly (Heeger & Mackey, 2019).

⌊y1⌋2 =
⌊β z1⌋2

(b σ1)2 + Wn1⌊β z1⌋2 (3)

Note that we’ve only presented the dynamical equations for
V1; V4 follows similar dynamics. We observe that to main-
tain dynamics with a stable fixed point (vs. a limit cycle cor-
responding to sustained oscillations), the feedback to the in-
hibitory neuron population must be equal to or higher than that
to the excitatory neuron population, in line with studies of at-
tention in Macaques (Mitchell, Sundberg, & Reynolds, 2007;
Snyder, Morais, & Smith, 2016).

Coherence and Inter-Areal Communication

Given that we have the fixed-point solution for our system
of equations (Eq. 3), linearizing around the fixed point and
adding to each equation an additive noise drive LdW, where
dW is a vector of independent Gaussian increments with cor-
relation matrix D, leads to a wide-sense stationary Gaussian
process, x(t), whose power spectral density matrix is given
by

S(ω) = (ıωI+J)−1LDLT(−ıωI+J)−T (4)

where J is the Jacobian at the fixed point. From S(ω) we can
directly compute the coherence, κi j = |Si j|2/(SiiS j j), between
the maximally firing neurons in the two areas as a function of
feedback strength (Fig. 2). We observe two distinct frequency
channels for feedforward and feedback signals, consistent
with experimental findings (Bastos et al., 2015; Van Kerko-
erle et al., 2014). Moreover, enhancing the relative feedback
(by increasing γ) causes a redshift, whereas boosting the in-
put gain (by increasing β) results in a blueshift in the peak
coherence frequency (Fig. 2).
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Figure 2: Effect of attention (mediated by feedback and in-
put gain) on coherence between V1 and V4. Top: The rel-
ative feedback to the excitatory neuron (y1) w.r.t the inhibitory
neuron (a1) can be modulated by varying the parameter γ.
As we increase feedback to y1 by increasing γ, the peak co-
herence frequency is redshifted towards the alpha frequency
band. In the absence of any feedback (γ = g = 0) the peak
shifts to the gamma frequency band, analogous to the sce-
nario when there is equal feedback to y1 and a1. Bottom:
The relative input to y1 w.r.t a1 can be modulated by varying
the parameter β. As we increase β, the peak coherence fre-
quency is blue-shifted.

The correlation matrix for x(t), C(0), can be obtained as the
solution to the Lyapunov equation

JC(0)+C(0)JT =−LDLT (5)
Given C(0), we follow the method used by (Semedo, Zand-
vakili, Machens, Byron, & Kohn, 2019) to arrive at our ana-
lytical model of communication subspace (CS). We divide the
mean-subtracted responses of the total population of neurons,
x, into the mean-subtracted responses of the source neurons,
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Figure 3: Effect of feedback-mediated attention on within
and inter-area communication subspaces. Source: V1,
Target: V1 (within-area), V4 (inter-area). Increasing the rel-
ative feedback by increasing γ improves the inter-areal pre-
diction performance, while within-area prediction performance
declines.

y (V1), and of the target neurons, z (V4). For a linear readout
z=BTy, minimization of the L2 norm yields Bopt = C−1

1 C3 with
residual mean squared error ε = Tr(C2 +BTC1B− 2BTC3),
where C1 = E[yyT], C2 = E[zzT] and C3 = E[yzT]. These
matrices can be obtained directly from C(0). Given Bopt, we
use reduced-rank regression to find the dimensionality of the
CS within and across areas. We find that an increase in
feedback-mediated attention correlates with improved inter-
areal prediction performance (Fig. 3) while the dimensional-
ity of the subspace remains unchanged, whereas within-area
communication diminishes significantly with increased feed-
back.
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