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Abstract
Natural scenes are dominated by horizontal and vertical
local orientations. Bayesian models of vision therefore
suggest that the visual system implements a prior bias-
ing orientation perception towards cardinal orientations.
The existing evidence, however, suggests that this view
may be too simplistic: while neuroimaging studies re-
port neural representations biased towards cardinal ori-
entations, psychophysical work suggests that perceived
orientation is biased away from cardinal orientations.
Here, we reconcile these findings using neural-network
modelling combined with psychophysical testing. We
implemented a sparse predictive-coding network as a
biologically-plausible model of perception and learning in
the visual system. Following training on natural scenes,
orientation processing was tested with orientated grat-
ings of varying signal-to-noise ratio. In line with previ-
ous work, the network developed orientation-tuned re-
ceptive fields. Anisotropy emerged spontaneously, with
greater preponderance of units tuned to cardinal than
oblique orientations. This non-homogeneity acted as a
structural constraint, reproducing the oblique effect seen
in human vision, as well as generating attractive biases
towards cardinal orientations in neural representations.
Importantly, due to lateral inhibition, biases increased
with stimulus signal-to-noise ratio. Consequently, in sim-
ulated psychophysical experiments, the network repro-
duced the pattern of apparent repulsive biases seen in
human observers. These results are able to reconcile ap-
parently contradictory findings in human psychophysics
and visual neuroscience.
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Background
Biases in perception are typically thought to reflect the influ-
ence of prior expectations on sensory processing. Natural
scenes are dominated by horizontal and vertical local orien-
tations, and it has therefore been argued that the visual sys-
tem implements a prior biasing orientation perception towards
cardinal orientations (Girshick et al., 2011).

However, the complex nature of the existing evidence sug-
gests that this view may be too simplistic. Behavioural studies
report perceived orientation to be biased away from cardinal

orientations, with greater signal-to-noise ratio leading associ-
ated with lower bias (de Gardelle et al., 2010). Recent ac-
counts explain this apparently ’anti-Bayesian’ effect via the
phenomenon of likelihood repulsion: a bias away from re-
gions of high encoding precision, which, in the case of ori-
entation correspond to cardinal orientations (Wei & Stocker,
2015; Hahn & Wei, 2024).

These behaviorally-measured biases contrast sharply with
the findings of neuroimaging studies, which, in line with more
conventional Bayesian models, suggest that neural represen-
tations are biased towards cardinal orientations (Harrison et
al., 2023). Furthermore, one weakness of behavioural ap-
proaches is that it is only possible to measure a relative per-
ceptual bias: the bias for one stimulus relative to bias in an-
other (reference) stimulus.

We attempt to reconcile these divergent findings. We
draw upon sparse predictive coding as a biologically plausible
framework for how the brain performs inference and learning:
by minimizing mismatch between current sensory inputs and
those predicted by a probabilistic generative model of the en-
vironment. Predictive coding is able to account for a wealth
of phenomena in early visual cortex (Rao & Ballard, 1999;
Spratling, 2010), and comes with its own claims to optimally
(Friston & Kiebel, 2009).

Figure 1: Distribution of learned receptive field orientations for
40 models trained on COCO images.



Methods
Network architecture. We implemented the predictive cod-
ing model as a simple convolutional neural network. All work
described here employed a single nc = 64 channel transposed
convolutional layer. Early work on predictive coding incorpo-
rated a sparsity-inducing prior on neuronal activations (Rao &
Ballard, 1999; Boutin et al., 2021), in line with sparse coding
approaches (Olshausen & Field, 1996). Here, we introduce
a biologically inspired sparsity-inducing mechanism into the
generative model itself. This mechanism takes the form of
a spatially localised Softmax Linear Unit (SoLU) non-linearity
(Elhage, 2022), applied to neuronal activations v:

SoLU(vi) = viσ(vi) =
evi

∑
k1
i=k0

evi
vi

Neurons thus compete with others within their local neigh-
bourhood VK , defined by a square-shaped region centred on
the neuron’s location, i.e. comprising those neurons VK , {vi ∈
VK |DCh(vi,vk) ≤ np}, with a Chebyshev (chessboard/King’s
move) distance DCh of at most np pixels. The output of the
non-linearity is passed to the transposed convolutional layer
CT to reconstruct the image. We do not employ precision-
weighting: the objective function is simply a sum of squared
prediction errors:

F =
1
2
(x−CT SoLU(v))2

Figure 2: Orientation sensitivity, measured by the standard
deviation of the vector average readout over 20 trials.

Training & Testing Models were trained on the COCO
dataset (Lin et al., 2014). Images were prefiltered with a
Laplacian of Gaussian filter to simulate sub-cortical process-
ing. We trained a population of 40 single-layer models, all with
64 channels and a convolution kernel size of 11x11 pixels.
Values of np ranged from 1 to 5 pixels. Orientation of learned
elements was estimated using the structure tensor method

(Bigün, 1988). Models were tested on orientated grating stim-
uli of different signal-to-noise ratio, manipulated by varying
contrast. Model estimates of orientation were decoded from
neuronal activations using a standard population vector aver-
age decoding approach (Georgopoulos et al., 1983).

Results
Models learned Gabor-like receptive field structures, with
spontaneously emerging anisotropy in orientation distribution
strongly favoring cardinal orientations (Figure 1). This induced
a marked oblique effect (Figure 2). In line with neuroimag-
ing studies, the network’s representation of orientation was
biased towards cardinal orientations. These biases increased
in line with increasing signal-to-noise-ratio, contrasting to the
predictions of standard Bayesian observer models (figure 3;
solid lines). Furthermore, when tested in a 2-interval-forced-
choice paradigm characteristic of human psychophysics, em-
ploying a test stimulus with low or moderate signal-to-noise-
ratio and a reference with high signal-to-noise-ratio, the net-
work reproduced the pattern of apparent repulsive biases re-
ported in human observers (de Gardelle et al., 2010).

Figure 3: Decoded absolute biases (attractive; solid lines)
and relative or apparent biases from simulated psychophys-
ical study (repulsive; dotted lines). Apparent repulsive biases
follow reorted findings in humans: greater repulsion is seen
for lower (purple line) than for higher (red line) signal-to-noise
ratio in the test stimulus.

Conclusion
Our findings demonstrate that, when optimised for natural im-
ages, sparse predictive-coding networks spontaneously learn
structural constraints leading to counter-intuitive effects in
tests with artificial stimuli. These effects mirror those seen
in human observers. Overall, our network is able to recon-
cile apparently contradictory results from psychophysical and
neuroimaging studies on human orientation perception.
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