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Abstract
Studies monitoring neural responses over time have
shown that neural representations “drift”, while be-
haviour stays constant - a phenomenon suggested to be
linked to learning. Here we demonstrate that continual
learning in deep neural networks may serve as a mod-
elling framework for making progress in this domain, (a)
for understanding the underlying computations and (b)
for testing the analysis tools used. We train networks
that implement two different neuroscientific theories on
how stable behaviour can be maintained in light of learn-
ing new tasks. The first strategy allows for the models’
readouts to ’track’ the changing representations. The
second confines learning to the nullspaces of previously
learned readouts. Both simulations replicate hallmarks
of drift observed in neuroscience - changing single-unit
tuning, reduced cross-decoding performance over time,
and changes in the overall population response. At the
same time, existing analysis techniques cannot reliably
differentiate the two implemented mechanisms. Contin-
ual learning may therefore offer a language for expressing
computational hypotheses on drift, as well as a testbed
for developing new analysis techniques.
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Introduction
Understanding the neural representations underlying be-
haviour has been a longstanding enterprise in neuroscience.
Curiously, neural recordings performed over multiple weeks
have shown that representations “drift” while behaviour stays
constant (Driscoll, Pettit, Minderer, Chettih, & Harvey, 2017).
Whether drift is a bug or a feature remains a topic of debate
(Masset, Qin, & Zavatone-Veth, 2022), but one emerging view
suggests that drift may be the result of, or even contribute to,
learning (Driscoll, Duncker, & Harvey, 2022; Micou & O’Leary,
2023). In line with this, work in AI continual learning (CL)
has focused on how representations change as new tasks are
trained (Anthes, Thorat, König, & Kietzmann, 2023; Davari,
Asadi, Mudur, Aljundi, & Belilovsky, 2022), suggesting that
”drift” may support a system’s ability to keep learning, while
maintaining performance on previous tasks (Anthes, Thorat,
König, & Kietzmann, 2024). Irrespective of its role, drift raises
the question about how the brain “reads out” stable informa-
tion, while the underlying representations change (Rule et al.,
2020). One suggestion is that the readout is updated along
with the representations, e.g. via Hebbian plasticity (Rule &
O’Leary, 2022). Another strategy discussed is that no up-
dating is needed, as drift occurs in an orthogonal subspace
(Rule, O’Leary, & Harvey, 2019).

In this work we present normative models for both strate-
gies. This is accomplished by adapting techniques from con-
tinual learning in artificial intelligence. We first verify that hall-
marks of drift occur in these models, and then draw conclu-
sions about the ability of commonly used analysis techniques

to differentiate such computational strategies to compensate
for changing representations.

Methods
We consider two CL algorithms as normative models im-
plementing two hypotheses from computational neuroscience
that describe how stable behaviour can be accomplished de-
spite drifting representations.

Strategy A This strategy is based on the Learning with-
out Forgetting (LwF) algorithm (Li & Hoiem, 2017), whose
gradient-based procedure is similar to the Hebbian plasticity
procedure from previous work (Rule & O’Leary, 2022) mod-
elling biological drift. Before learning a new task, pseudo-
labels for the new task images are generated at the old tasks’
readouts. While learning the new tasks, the old readouts are
trained to maintain a stable mapping between the new task’s
inputs to their pseudo-labels, effectively maintaining stability
for the old task mappings while allowing learning on the new
task. In this setting, the old readouts change with the drifting
representations in the network (Fig. 1A, top).

Strategy B This strategy restricts updates to previously
learned representations to the nullspace of old read-
outs (Saha, Garg, & Roy, 2021; Farajtabar, Azizan, Mott, &
Li, 2020). While learning a new task, gradients for previous
tasks with respect to the activations are computed at each
layer of the network. Gradients for the new task are projected
into the nullspace of activation gradients for the old task. This
ensures that activations for the previous tasks do not change
in ways that would affect their readouts. In this setting, the old
readouts do not adapt and representations continue to drift in
the nullspace of those readouts (Fig. 1A, bottom).

Simulation setup
We sequentially train a fully connected ANN (two hidden lay-
ers with 256 units, ReLU activations) on six unique subsets
sampled from the combination of MNIST (LeCun, Bottou,
Bengio, & Haffner, 1998), Kuzushiji-MNIST (Clanuwat et al.,
2018), and Fashion-MNIST (Xiao, Rasul, & Vollgraf, 2017).
Each subset constitutes a 5 way-classification task, for which
a separate readout is trained. We trained 10 instances for
each strategy. In all the results, we report the mean and 95%
confidence intervals thereof across these instances.

Results
Models employing either strategy showed stable behaviour
(classification accuracy) on the first task as they learned new
tasks (Fig. 1C, black line), as compared to the baseline where
no continual learning algorithm was deployed (dotted gray
line).

Representational Drift Analyses
Here, we assess how representations in the computational
models change as they learn new tasks - to do so, we adapt
well-known techniques from the neuroscientific literature to
check for signatures of drift.



Figure 1: A: Illustration of different scenarios for the effects of representational drift on downstream areas. B: Single neuron
tuning curves. Each row denotes the distribution of activity over all 5 classes in the first task (normalised to sum to 1 for each
phase). C: cross decoding performance for SVMs trained on representations at different training phases. D: population code
correlation measured with the representational drift index introduced in Schoonover et al. (2021). rws denotes the correlation
between random halves of population responses from the same phase, rbs denotes correlation between random halves of
responses from different phases (Computed for each class included in the first task. Shown is the mean over classes).

First, considering single neuron tuning, prior studies
have shown that single neurons in mice change their tun-
ing over days/weeks while the animal maintains stable be-
haviour (Driscoll et al., 2017). Analogously, we checked if
tuning to classes across units in the pre-readout layer of the
models changed similarly over training phases. As seen in
Fig. 1B, both models showed tuning changes while learning.
Intriguingly, the most selective units had the largest changes
in their class tuning.

Second, considering task-relevant subspaces in the pop-
ulation code, a prior study showed that linear SVMs trained
on representations on a given day do not generalise to rep-
resentations on another day/week (Schoonover et al., 2021).
Generalisation decreases with increasing time intervals be-
tween the train and test days. As seen in Fig. 1C, our two
models both show this pattern - SVMs trained on a given train-
ing phase, for task 1 data, generalise poorly to other training
phases, with the generalisation depending on the temporal in-
terval between those phases. For Strategy B, this loss of gen-
eralisation is surprising, as we know that a stable readout ex-
ists, as evidenced by the black line in Fig. 1C (bottom panel).
This can be explained by the usage of different readout strate-
gies: while the models use linear softmax classifiers, the anal-
ysis relies on SVMs. These results suggest that these SVMs
do not rely on the same subspace as the natural readout of
the continual learners. This finding has implications for anal-
yses of neural drift, as the brain’s readout strategy remains

unknown - choosing the wrong readout analysis strategy may
therefore overestimate the consequences of drift.

Third, assessing overall representational changes, Marks
and Goard (2021) have shown that the correlations of stimulus
representations across days decrease with increasing time in-
tervals between those days. As seen in Fig. 1D, and assessed
via representational drift index (RDI), both of our models show
this pattern of an increasing RDI, i.e. class representational
correlations (from task 1) across training phases decrease
with increasing temporal intervals between those phases.

Conclusion
The role of representation drift in the brain remains an open
question. Here, we adhere to the hypothesis that drift is es-
sential for learning and presented two computational models
that express the two main hypotheses of how the brain may
deal with drifting representations: adapting the readout, or
confining drift to the readout’s nullspace. We demonstrate
that both systems exhibit drift, as measured via traditional
drift analysis techniques from computational neuroscience.
However, none of the analyses could reliably differentiate be-
tween these two accounts. These findings suggest that con-
tinual learning in deep neural networks could be used as a
framework for implementing computational hypotheses on drift
(Doerig et al., 2023; Golan et al., 2023), and for the devel-
opment of new analysis techniques in neuroscience, thereby
further elucidating the nature of drift in biological systems.
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