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Abstract
Visual perception must balance two competing goals: in-
variance and sensitivity. One can recognize a bird, de-
spite significant variation in its pose, color, or texture,
yet can also describe those identity-orthogonal features.
How do our brains achieve this balance? We test a the-
ory that the brain learns an equivariant representation
of objects, in which identity-preserving transformations,
specifically 3D rotation, are encoded by a common, pre-
dictable transformation of the neural response. Using
a stimulus set of 3D objects rendered from spherically-
sampled viewpoints, we develop a metric to assess ro-
tational equivariance by and test this on neural activity
from primate inferior temporal (IT) cortex as well as fea-
tures from Imagenet-trained deep neural networks. Al-
though category and identity information are evident in
IT cortical responses, evidence for rotation equivariance
is weak. We find an optimal subspace of IT cortex that
possesses more equivariance than would be expected by
chance, but no more than in a deep neural network model
or the pixel space of the images. Our results indicate that
IT cortex lacks rotation-equivariant representations and
suggest the need to explore other cortical systems down-
stream of IT that may serve as the basis for equivariant
visual object perception.

Keywords: vision; object recognition; invariance; IT cortex;
equivariance; rotation; deep learning.

Introduction
Many cognitive tasks require the ability to disentangle rele-
vant information from covarying factors. For example, visual
object recognition requires encoding identity information inde-
pendent of identity-irrelevant dimensions, such as spatial posi-
tion, rotation, or pose. Frequently, these nuisance covariates
inherit intrinsic symmetries from the physical reality. Repre-
sentations that incorporate these known underlying symme-
tries can not only learn more efficiently but also generalize at
an abstract level. For example, if we know to represent the
effect of in-plane rotations by an affine transformation, we can
predict the appearance of objects for arbitrary rotation angles
and novel objects.

In the context of deep learning, symmetry-aware represen-
tations help improve the data efficiency, with example ap-
proaches including convolutions for translation equivariance,
data augmentation, and geometric deep learning (Bronstein,
Bruna, LeCun, Szlam, & Vandergheynst, 2017; Olah, Cam-
marata, Voss, Schubert, & Goh, 2020).

In visual neuroscience, an influential symmetry-aware the-
ory is invariant object recognition, which posits that neural
representations underlying object recognition ignore identity-
irrelevant transformations (DiCarlo & Cox, 2007). The ventral
visual stream, particularly the inferior temporal (IT) cortex, is
widely suggested to be the basis of invariant object recogni-
tion due to its selectivity for natural image features and encod-
ing of identity-predictive features. However, perceptually, hu-
mans and other primates can also identify identity-irrelevant

features such as rotation in addition to object identity, and
neural responses in IT cortex also encode information about
identity-orthogonal features, such as the position, pose, and
size of objects (Hong, Yamins, Majaj, & DiCarlo, 2016). More-
over, humans can also generalize rotations to new object ex-
emplars (Biederman & Bar, 1999), which is a difficult task for
deep learning models optimized for invariant object recogni-
tion (O’Connell et al., 2023). Thus, rather than invariance,
equivariant representations may provide a more symmetry-
aware explanation that also accounts for transformation de-
coding and generalization.

We thus investigated the primate ventral visual stream as
well as deep neural network (DNN) models of visual ob-
ject recognition to assess the degree to which equivariance,
specifically for 3-dimensional object rotation, characterizes
their representational structure. Our findings provide evidence
to suggest that although equivariance, rather than invariance,
is a more complete theory of visual object perception, nei-
ther IT cortex nor leading Imagenet-trained deep neural net-
work models contain representations sufficient for supporting
equivariant object perception.
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Category decoding
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Object decoding
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Viewpoint decoding
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Viewpoint (leave-one-object-out) decoding
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Feature space coherence with spherical coordinates

Viewpoint Coordinates Monkey CIT
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Figure 1: a, Examples of stimuli rendered from different viewpoints.
b, Decoding accuracy. Gray lines denote permutation distribution. c,
Representational dissimilarity matrices. d, RDM correlation to coor-
dinate space.

Methods
Stimuli We selected 20 objects from the Objaverse-XL 3D
object set. We sampled 50 camera positions that were (ap-
proximately) evenly spaced on a sphere and used Blender to
render images of each object from each of these 50 positions,
yielding a total of 1000 unique images 1.

Neural Data Collection We measured electrophysiological
responses in IT cortex of one monkey while viewing images,
presented for a duration of 150ms with a 150ms interstimu-
lus interval, in serial presentation. The monkey was trained
to maintain fixation centrally during image presentation, and
fixation was monitored using an Eyelink eyetracking system.
Each image was repeated 10 times within a recording ses-



sion. We recorded from two chronically implanted electrode
arrays in the left hemisphere, one floating microelectrode ar-
ray in central IT and one Neuropixels probe in anterior IT.

Results

Decoding information

What information is encoded in the neural representation that
can be accessed via a linear readout? We used a cross-
validated linear SVM to predict the category of each image
from neural responses and compared its performance to a
permutation distribution from refitting the classifier with ran-
domly shuffled labels. We found that category information
could be accurately predicted substantially above chance-
level from IT neural responses as well as DNN model re-
sponses (Fig. 1b). We similarly found accurate decoding
of object identity. Finally, we used ridge regression to esti-
mate the 3D viewpoint coordinates corresponding to each im-
age. Using random cross-validation, we found that most DNN
model features were able to predict viewpoint substantially
above chance. However, when holding out one object and
training on the remaining objects, we found that no model’s
features predicted viewpoint above chance, suggesting that
although object-specific, but not object-general, viewpoint in-
formation is encoded in pretrained DNN features. This finding
is consistent with prior literature suggesting that DNN models
fail to generalize to out-of-class viewpoints (O’Connell et al.,
2023).

Comparing similarity structures

To assess the degree to which neural and DNN representa-
tions capture the similarity structure between different view-
points of the same object, we performed a representational
similarity analysis. We first computed the distance between
each pair of viewpoints in the 3D coordinate space (Fig. 1c,
left). Then, for each object, we computed the distance be-
tween the neural response to each pair of viewpoints of that
object and averaged over all objects to yield a representational
dissimilarity matrix over viewpoints (Fig. 1c, middle, right). We
then correlated these RDMs with the RDM generated from the
viewpoint coordinate to measure the degree to which each
representational space captured the relative distances be-
tween all viewpoints. To determine a baseline level of repre-
sentational similarity, we also computed the representational
dissimilarity in the pixel-space of the images. We found that
most models performed no better than pixel-wise similarity.

Assessing the Presence of An Equivariant
Subspace

One hypothesis of how a neuronal population can simultane-
ously represent information about object identity and rotation
is to partition each type of information into orthogonal sub-
spaces. Furthermore, if the rotation-specific subspace had
the same geometry of the veridical transformations, it could
support generalization to unseen views by extrapolating rota-
tions from any view. In our stimulus set, the 50 object views
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Figure 2: a,b, illustration of veridical (a) and possibly irregular (b)
view representations. If a representation space is equivariant to the
veridical space, the original pairwise relations (indicated by arrows)
should pertain. c, illustration of the 50 camera views we sampled.
d, View-to-view prediction error in various 3D subspaces (colors) of
different image representations (x-axis) by applying veridical transfor-
mations (a,b). Small and large dots correspond to individual objects
and object-averages.

were obtained from 50 camera locations placed on a sphere
around the origin (Fig. 2c). The relation between each pair of
views can be represented as a rotation matrix in this 3D latent
space, and pairwise rotation matrices only depend on the rel-
ative positions (Figure 2a). We empirically tested whether the
neural data contained a subspace equivariant to these view
rotations. To do so, we optimized a projection matrix from
the full neural state space (29 neurons) into a 3-dimensional
latent space that aimed to preserve the pairwise linear trans-
forms between views (Fig. 2b), by minimizing the prediction
error between every pair of views while freezing the pairwise
rotational matrices between positions in the latent 3D space
(Fig. 2b). The error was calculated as the Euclidean distance
between predicted and actual view vectors (averaged over 50
× 50 pairs; vectors were normalized to have an average scale
of 1). Because any equivariant representation may, in general,
be specific to an object, we separately optimized the projec-
tion matrix for each object.

We first established that the first 3 principal components
of the neural state space did not contain equivariant repre-
sentations. Applying the latent-space rotation matrices to the
first 3 PCs, we could not predict the representation of one
view from another better than chance (the same analysis af-
ter randomly permuting the 50 views). Meanwhile, the neu-
ral subspace optimized for equivariance showed some level
of equivariance. Optimizing a 3D subspace (in the 29D neu-
ral representation space) lowered the error of predicting the
representation of one view from another. This lower error is
specific to the view structure, because view permutation led
to higher view-to-view prediction even after optimization of the
projection.

We conducted an analogous analysis in pixel space and
four layers of AlexNet. To ensure meaningful comparisons,
we used PCA to project each feature space to 29D, the
same as the full neural state space. The amount of equiv-
ariance present in the optimal neural subspace is similar to
that present in a late deep net layer (AlexNet ‘classifier.2.’ or



pool 5) and lower than the equivariance in earlier AlexNet lay-
ers and in the pixels. This result is consistent with IT empha-
sizing object identity information and reducing view represen-
tations, perhaps by overrepresenting canonical views of an
objects (e.g., a person viewed from the front rather than the
back, top, or bottom).

Summary

Our results indicate that IT cortex is unlikely to be the basis of
equivariant object recognition. This is in line with prior results
suggesting that IT cortex encodes local complex visual fea-
tures, rather than global 3D shape (Bonnen, Yamins, & Wag-
ner, 2021; Jagadeesh & Gardner, 2022; Waidmann, Koyano,
Hong, Russ, & Leopold, 2022; Xiao, Sharma, Kreiman, & Liv-
ingstone, 2023). We conclude by suggesting that equivariant,
not invariant, object recognition ought to be the target of com-
putational modeling efforts, therefore emphasizing the neces-
sity of exploring other cortical regions, perhaps downstream
of IT cortex, that might provide sufficient representations to
support equivariant object recognition.
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