A comprehensive large-scale model of primary visual cortex (V1)
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Abstract

We introduce a comprehensive retinotopic model of V1
based on ORGaNICs, a stochastic recurrent circuit frame-
work implementing divisive normalization via modulation
of recurrent amplification. Specifically, we simulate the
membrane potentials and firing rates of complex V1 neu-
rons driven by the outputs of a steerable pyramid, thus
capturing the retinotopy, spatial frequency, receptive field
size, and orientation-tuning selectivity of the neurons. We
further implement a Gaussian-Rectification (GR) model
for the generation of spiking activity that takes into ac-
count the time-correlations of the membrane potentials.
We demonstrate that this GR model accurately captures
the dependence of the Fano factor and noise correlations
as a function of stimulus contrast. The spike process is
then filtered and fed back as input to the dynamical vari-
ables simulating the membrane potential of the neurons.
Thus, using the theory of stochastic LTI systems, we
demonstrate that, for a grating response, the circuit ex-
hibits gamma frequency oscillations and accurately cap-
tures the contrast dependence of gamma activity and LFP
coherence, measured across neuronal populations tuned
to different spatial locations, orientation, and spatial fre-
quency. Finally, we predict these quantities in the context
of plaids, and natural images. Therefore, our framework
offers a versatile tool for understanding the dynamics and
noise correlation of V1 activity.
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V1 model

We begin with a brief introduction of the setup of our problem.
A common implementation of ORGaNICs (Heeger & Mackey,
2019; Heeger & Zemlianova, 2020) is given by the following

set of stochastic differential equations,
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Here, z is the input drive to the circuit; y, a, and u are the
membrane potentials of the principal excitatory neurons, in-
hibitory neurons, and excitatory modulatory neurons, respec-
tively, that evolve according to the dynamical equations de-
fined above. y*, u™, and a* are the firing rates of the cor-
responding neurons, found by applying rectification (|.]) and
a power function on the corresponding membrane potentials.
Each of these firing rate variables is defined by a differential
equation of the form tx™ = —x* + |x|® 4+, simulating
synaptic filtering, where B is the exponent of the nonlinear-
ity equal to 2, 1, 0.5 for y, a, and u, respectively. The vari-
ance of 14+ is defined by a modified GR model described in
the next section. My, Ma and My are uncorrelated Gaussian
white noise modeling stochastic inputs for the membrane po-
tentials. Terms highlighted in green and blue in Eq. 1 repre-
sent, in turn, the external input gated by an input gain, and the
recurrent input gated by a recurrent gain for a given neuron.
b, a, and by and are the input gains for the external inputs z,
ut and o fed to neurons y, a, and u, respectively. Addition-
ally, ¢ is a semi-saturation constant that defines the shape of
the normalization curves for different principal neurons. W, is
the recurrent weight matrix that captures lateral connections
among the principal neurons. This recurrent input is gated by
the inhibitory a neurons, via the term 1/(1+a™). Similarly,
the normalization weight matrix, W, encapsulates the recur-
rent inputs received by the u neurons. Here, since the neu-
rons are arranged according to the 2-dimensional retinotopic
structure, we designed W to have spatially local connections
(viz., the normalization pool is local) to implement surround-
suppression in V1. The specific forms of the terms appear-
ing in the dynamical system are designed in such a way that
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Figure 1: a: An illustration of the ORGaNICs model with three different types of neurons which receives a grating stimulus (z). b: Response to
a 45-degree oriented grating stimulus. Coherence between the maximally firing neuron and neurons with the same RF location, same preferred
spatial frequency (SF), but different preferred orientations (left); nearby RF location, same preferred SF, and same preferred orientations
(center); same RF location, different preferred SF, and same preferred orientations (right). ¢: Same as b, but for a plaid stimulus. d: Fano
factor of the maximally firing neuron, demonstrating noise quenching upon stimulus onset, presented at r = 0. e: Fano factor as a function of
the contrast of a grating stimulus and a prediction of the effect of attention.

the principal neurons follow the normalization equation exactly
at steady-state, y; = z]?/(c*> + W|z]?) when W, =1 and
b = by = bgl, where by is a scalar.

We use Eq. 1 to simulate the activity of the complex cells in
V1. We take the input drive, z, to be the output of a Steerable
pyramid, thus capturing the spatial frequency, receptive field
size, and orientation-tuning selectivity of the neurons. This
gives a large-scale stochastic dynamical system of ~ 25000
variables.

GR model for spiking activity

Now we define the dynamical equations for the firing rates,
y", ut, and a*. Since the generation of spikes from the
membrane potential is a reliable process, following (Carandini,
2004) we assume that the trial-to-trial variability in the spiking
process arises entirely because of the variability in the neu-
ron’s membrane potential. We consider the spikes to be gen-

erated by a model similar to GR (Carandini, 2004), where the
membrane potentials are assumed to have a Gaussian proba-
bility distribution with a given variance. At each time step, the
probability of firing is equal to the probability of sampling the
membrane potential beyond the firing threshold. This model
has been successful in capturing the variability observed ex-
perimentally in V1, but such a model always predicts Poisson-
like spiking (viz., Fano factor equal to 1). Since, experimen-
tally, Fano factors larger than 1 are observed for low contrast
grating stimuli, we implement the GR model analytically and
incorporate the time-correlations of the membrane potentials.

Specifically, we assume the spike train (S, =11 + L + ... +
I,), generated by the membrane potentials, to be a sum of
correlated Bernoulli indicator random variables, /;, with prob-
ability pAt of firing in time At, where p is the probability mass
above the threshold. We approximate the firing rates by the
first and second moments in the dynamical system, as fol-



lows. The normalization equation defines the mean of the
spike train, E[S;] = |y]%t, hence we have that p = [y|>. To
calculate the variance, we use the fact that the indicator vari-
ables are correlated in time, so that Var(S;) = ¥;Var(l;) +
Y.izjCov(l;,1;). Since the membrane potentials are described
by Eq. 1, we know that Cov(1;,1;) o< pe~2TU=1/% where 1, is
the effective time constant of the neuron which can be defined
analytically for our system at steady-state in terms of the cir-
cuit parameters. Thus, we can evaluate the variance of the
spike train and hence the Fano factor analytically.

Results

Since our system exhibits a fixed-point solution, we can cal-
culate the power spectrum analytically, defined by the spec-
tral density matrix which depends on the Jacobian (J) and the
noise matrix (Q) as follows, S(®) = (lwI+J) "' Q (-l +
J)*T. From the appropriate elements of this matrix we can
obtain the coherence between any two neurons as a function
of frequency. We show the results for coherence between the
maximally firing neuron and neurons with a different orienta-
tion tuning/ RF location/ spatial tuning frequency for grating
and plaid stimuli, Fig. 1b&c. Further, our model captures the
quenching of the Fano factor upon stimulus onset (Fig. 1d),
a widespread cortical phenomenon (Churchland et al., 2010).
Finally, the Fano factor (F'F) can be written in terms of the ef-
fective time constant, T, as FF = 1 +Yt,, where Y is a known
constant depending on model parameters (viz., not a fit pa-
rameter). Fig. 1e shows the FF as a function of the grat-
ing stimulus contrast, similar to experiments (Coen-Cagli &
Solomon, 2019). The orange curve predicts the effect of at-
tention, which we simulate by varying the input gains b (Eldar,
Cohen, & Niv, 2013).
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