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Large Language Models (LLMs) are able to adopt vari-
ous roles, including simulating language use across dif-
ferent ages, which suggests an understanding of lan-
guage evolution in humans. This study investigates the
extent to which LLMs can mimic human developmental
linguistics, comparing LLM interpretation of images and
text to structural MRI data of the human brain at different
ages. We analyze LLM output complexity through seman-
tic embeddings and assess the embeddings’ correlation
with human brain development. Our findings indicate that
the model’s ability to replicate age-specific developmen-
tal stages varies significantly with the input modality. In
addition, substantial correlations are observed between
LLM output and structural brain changes in humans. We
found that brain-network correlations to LLM output were
specific to the input modality chosen. For example, LLM
image interpretations were more closely tied to visual net-
works than were text interpretations. This work has impli-
cations for our understanding of LLMs as well as our un-
derstanding of the developmental linguistic and sensory
changes that occur over a human development.
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Introduction
The rapid evolution of large language models (LLMs) is partly
attributable to the ease of specific role prompting and requests
to achieve intended results. However, short-comings have
been reported in LLM performance, including hallucination
artifacts and implicit biases, which can be difficult to detect
(McKenna et al., 2023). A recent study on LLM in-context
impersonation revealed that prompting the model to imper-
sonate children recovers aspects of human-like developmen-
tal stages (Salewski et al., 2023). However, it remains un-
clear how accurately these developmental stages can be re-
produced with LLMs compared to human behavior. Previous
literature has shown LLM behavior and human brain function
converges with good agreement between neural activity and
embedding vectors (Caucheteux & King, 2022). Neural sig-
nals have been shown to correlate with LLM embeddings via
representation similarity analysis (Li et al., 2023). Although
functional imaging has been used to correlate neural activ-
ity with LLM embeddings, the relationship between LLMs and
structural brain composition has not yet been evaluated. In
this study, a framework is proposed for the evaluation of lan-
guage evolution in LLM as a function of age. Anatomical brain
imaging is investigated as a potential correlate to LLM em-
beddings. In addition, the effect of input modality is studied by
considering text-only, image-only, and a combination of image
and text.

Methods
Study Design. Short stories were generated with the use
of GPT4 and DALL-E 3. Each story consisted of 3-5 images
with text narratives. The GPT-4 API was then prompted to
”Describe the story” based on the images only, the text only,

Figure 1: Processing pipeline summarizing the considered input
modalities (image-only, image and text, text-only) and the LLM
output analysis. Text output and embedding vectors were

and a multi-modal input of both. This process was repeated
30 times and assigning the LLM a different age as a role.
The ages assigned ranged from 5-50 years old, sampling
each year between ages 5 and 30 (5,6,7...30 years old)
then sampling at 5 year-intervals (35,40,45,50 years old).
The embedding vectors were obtained for each story, age,
and input modality. Representational dissimilarity matrices
(RDMs) were generated across ages for each story and each
input modality. A dataset of structural imaging of the human
brain at different ages (Bethlehem et al., n.d.) was used to
generate RDMs across brain areas for comparison. Squared
Euclidean distance was used for RDM calculations.

Data Analysis. A second-degree squared Euclidean dis-
tance RDM was generated from the first degree LLM RDMs,
and multi-dimensional scaling was applied to plot each input
modality and each story in a 2D space. Following this analy-
sis, to identify the brain regions with RDMs that best correlated
with the RDMs obtained from LLM embeddings, a Bayesian
optimization was performed across MRI RDMs for each given
modality. We normalized each of the MRI RDMs by subtract-
ing the global minimum value and dividing by the range of all
RDM values. We then calculated the initial weights based on
their Spearman correlation with the modality RDM. For each
MRI RDM, the diagonal elements are set to zero, and the
Spearman correlation between the lower left triangle of the
MRI RDM and the lower left triangle of the modality RDM
were computed. Negative correlations were replaced with
zero. The weights were normalized to sum up to 1. The objec-
tive function calculates the Spearman correlation between the
combined RDM (weighted sum of MRI RDMs) and the modal-
ity RDM.

The acquisition function used in the optimization is the Ex-
pected Improvement (EI) with ξ = 0.01 and κ = None. The
Gaussian process parameters are set with α = 10−5. The
optimization is performed using the following equations:

w∗ =w EI(w) (1)

EI(w) = E[max( f (w)− f ∗,0)] (2)



where w is the vector of weights, w∗ is the optimal set of
weights, EI(w) is the Expected Improvement acquisition func-
tion, f (w) is the objective function value for weights w, and
f ∗ is the current best objective function value. The number of
iterations was set to 50 with 25 repetitions with different ran-
dom seeds and we used the weights from the repetition with
best performance to identify the optimal combination of brain
areas.

Results
The LLM successfully associated character names presented
in the text with the characters depicted in images, validating
proper interpretation of multi-modal information. A validation
prompt included images from one story with a text from a dif-
ferent story resulted in an output that incorporated elements
from both stories. When considering the MDS shown in fig-
ure 2, image-only and image-text inputs produced more sim-
ilar RDMs to each other for each story, whereas text-only in-
put RDMs were clustered further. This MDS and the relative
grouping also confirms the subjective findings through the se-
mantic embeddings.

Figure 2: Multidimensional scaling of LLM RDMs for each
short story and each input modality. The image-only and im-
age+text RDMs are clustered more closely together than text-
only RDMs.

Qualitatively, GPT 4 responses were modulated by age in
prose, syntax, and detail of response. Spearman correla-
tion revealed that image-only prompting correlated best with
MRI changes (r=0.92), followed by image-text (r=0.85), then
text-only (r=0.71) with p¡0.001 for all three cases. It’s no-
table that several well-established brain networks emerge as
strong correlates. For example, visual areas, lingual gyrus,
temporal pole, pericalcarine regions, and regions associated
with the default mode network showed good alignment with
the prompts. More specifically, the cuneus and pre-cuneus
regions and super parietal were activated across image-text,
text-only, and image-only modalities. For the text-only modal-
ity, the temporal and occipital regions were highly correlated.
Text-only had the highest spread of weights and in the gray
matter volume (GMV), white matter volume (WMV), total cere-
brum volume (TCV).

Figure 3: Rose plot depicting the optimal weighting scheme
determined by Bayesian optimization for each input modality
and the MRI RDM of each brain region organized into func-
tional networks.

Discussion

In this study, we successfully implemented a framework for
LLM interpretation of uni- and multi-modal data from the per-
spective of various human developmental stages. Multi-modal
results demonstrated the LLM’s versatility to synthesize infor-
mation from multiple sources, integrating visual and textual in-
formation. The MDS scaling further underscored the text-only
modality distinctiveness. This indicated its divergence from
the image-only and image-text modalities. We also showed
high (r¿0.9) correlation between changes in LLM activity and
structural changes in the brain over developmental stages.
Image-only input yielded the strongest correlation, which sug-
gests that visual stimuli results in more similar LLM activity to
human brain development compared to text-only stimuli. LLM
interpretation of image-only input yielded high correlation with
primary visual cortex (V1) structure. The Default Mode Net-
work (DMN) is a network of brain regions that focus on an
individual at rest with internally focused tasks such as mem-
ory retrieval (Hickok, 2009) and its development over age was
shown to correlate with LLM activity for all three investigated
input modalities. In the future we aim to explore the addition
of auditory stimuli to expand the multi-modal component of
the analysis. Additionally, we are developing a study in which
human subjects at various ages will interpret the same stories
that were passed to the LLM, allowing for a head-to-head com-
parison of human and LLM linguistics rather than comparing
LLM behavior to structural imaging of the human brain.
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