
Reinforcement Learning Over Complex Naturalistic 
Scenes 

 
Daniel B. Ehrlich (dbehrlich@berkeley.edu) 

Department of Psychology, 2121 Berkeley Way 
Berkeley, CA 94704 United States 

 
Anne G.E. Collins (annecollins@berkeley.edu) 

Department of Psychology, 2121 Berkeley Way, Helen Wills Neuroscience Institute 
Berkeley, CA 94704 United States 

Abstract: 

Significant strides have been made in understanding 
reward-based learning in neuroscience and psychology. 
However, many experimental paradigms employ overly 
simplistic stimuli, diverging from real-life experiences.   
Here, we investigate how humans learn over well-
controlled naturalistic stimuli from the ImageNet dataset.  
We used a pre-trained neural network to partition scenes 
into categories of visual and semantic features, drawn 
from differing levels of abstraction. Recent research 
highlights the intricate interaction between learning and 
cognitive processes, like working memory, attention, 
and perception. We hypothesized that the level of feature 
abstraction might impact recruitment of cognitive 
processes during learning. Indeed, we found that far 
from learning parameters being constant across these 
varied types of scene constructions, the types of 
features used impacted overall performance and the 
learning parameters drawn from best fit models.  
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Introduction 

The complex cacophony of natural scenes sits a far 
distance from the simple stimuli used in most laboratory 
reinforcement learning (RL) experiments. Limited 
literature exists to help bridge that gap, partially due to 
the difficulty of working with complex and variable 
natural scenes. Prior research on naturalistic stimuli in 
RL hints at the importance of considering how stimuli 
impact learning but has tended to use highly restricted 
stimuli sets (Farashahi et al., 2020). In this study we 
develop a method to sort arbitrary visual image sets into 
well-controlled, structured categories for RL tasks. We 
then analyze human RL behavior on a set of categories 
drawn from a diverse natural scene collection. RL and 
working memory (WM) are impacted by natural images 
(Yoo, Keglovitis & Collins, 2023; Brady, Störmer & 
Alvarez, 2016). We hypothesized that these cognitive 
processes might differentially impact reward learning 
over differing stimuli features. We test this theory by 
manipulating the level of semantic abstraction of the 

stimulus categories in the reward learning task.  

Methods 

Category Generation 
We developed a protocol for automated stimuli set 
construction that controls for overall distance between 
two categories over different types of image features. In 
brief, we use the activations from intermediate layers in 
a pre-trained deep convolutional network to create a 
latent space on which we define categories. For this 
paper we use the ImageNet dataset (Deng et al., 2009) 
and VGG-net (Simonyan & Zisserman, 2014) but 
methods broadly generalize to alternative networks and 
datasets. Layer depth of latent representations 
correlates to the level of semantic abstraction (Yamins 
& DiCarlo, 2016). We use the block 1, 3 and 5 pooling 
layers of VGG-net as our latent representations for 
“low”, “medium” and “high” abstraction, respectively. 
Our method allows us to generate pairs of image 
categories that are well controlled in their within 

Figure 1. Summary of Automated Category Generation 
Algorithm. (Top row) Run images through pre-trained 

ConvNet; (Middle row) Extract features from unit activity, 
pre-process, draw two categories; (Bottom row) Example 

image categories by network depth. 



category similarity and across category distance, with 
variance coming from features at specific abstraction 
levels.  

Task Structure 
Participants learned category-key associations from 

reward. Each image was an exemplar of one of two 
categories in that block and was presented only once in 
the experiment. Each category had one high value key. 
To isolate the effect of category understanding on 
reward learning, we introduced a “category prior” in 3 
blocks: participants were first shown 8 labeled images 
from each of that block’s categories to allow them to 
form category prototypes prior to reward learning onset. 
Example images were not used in the learning phase.  
Modeling Approach 

We fit reinforcement learning (RL), working memory 

(WM) and hybrid (RLWM) models adapted to 
naturalistic scenes (Collins et al., 2014). The RL model 
uses a value function approximation approach. The WM 
model stores recent stimuli representations as 
response exemplars. The RLWM model combines 
these policies with a fit mixing parameter. Models were 
fit with standard best practices (Wilson & Collins, 2019). 

Results 
     There was a strong effect of abstraction level on 
performance (One-way ANOVA, F=14.4, p=2.6e-5). 
Category prior availability impacted early learning (bins: 
0-30) but not asymptotic performance (Rel. T-Test, T=-
2.8,-2.8,-2.9, p=0.008,0.009,0.007). Model fitting 
results showed that the RLWM model outperformed the 
WM, RL and a modified RL model with features 
weighted by abstraction level. (T-Test, T=-6.7,5.3,4.3, 
p=2e-5,2e-4,9e-4). In RLWM, participants recruited 
significantly more WM in the high and low abstraction 
levels than medium (T-Test, T=-3.9,-7.9,p=5e-4,5e-9).  

Conclusion 

    Studying reinforcement learning in naturalistic stimuli 
will help extend prior insights into more realistic 
environments. Here we show that learning performance 
and cognitive mechanisms depend on level of 
abstraction, even with category differences controlled. 
Intriguingly our data indicates a U-shaped pattern in 
WM perhaps indicating preferential access to early and 
late visual information. In future work, we will explore 
how category priors impact cognitive strategy. 

Figure 2: RL Task Structure. (Top) On each trial participants 
saw a single image from our dataset, respond by pressing one 
of three keys, then received a High or Low reward; (Bottom) 

Block structure for task. Each level of abstraction was run 
twice, once with a “category prior” at the block start. Blocks 

were independent, each with new categories and images.  
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Figure 3: Behavioral and Model Results. (Top Left) 
Moving average of accuracy (chose high reward key) by 
level of category abstraction. * indicates p<0.05 within 
the bin (dashed lines) (Top Right) As left but for blocks 
with and without a category prior. (Bottom Left) Best fit 
mixing parameters for RL-WM by abstraction (Bottom 

Right) Model comparison 

Eqs 1: WM: WM buffer, l: decay, V: value, b: 
softmax temp, q: RL approximation params, a: learning 

rate, w: RL feature weight, r: strategy mixing param  
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