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Abstract

Despite the importance of uncovering causal, rather than
correlational, structures in the world to survival, algo-
rithms for this type of causal learning remain computa-
tionally taxing. Recent neural evidence has challenged
the ability of reinforcement learning (RL) algorithms to
provide a useful approximation. Here, we present a
new reinforcement learning model that uses modified
successor representations and incorporates evolution-
ary death avoidance, capturing a wide variety of human
structure learning and animal conditioning. To formally
capture the risk of learning in the wild we implement a
constraint where punishment distributions are inherently
heavy-tailed to account for the risk of death. This places
the intrinsic value on having a deterministic graph in this
framework, parsimoniously capturing a wide range of in-
strumental and non-instrumental behaviors.
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Introduction

Learning in the wild is dangerous. Animals constantly face the
possibility of death if they take wrong actions. This, death, is
a largely overlooked aspect in standard reinforcement learn-
ing models, where agents are often allowed to learn through
trial and error (death) to collect more rewards. However, in
reality, there is no trial after death. How do animals solve this
problem?

One way to avoid death is to discover and exploit causal,
rather than correlational, structures in the world. With causal
structural knowledge, animals can avert actions leading to
death and exploit the safe structures that will lead to rewards.
However, discovering such causal structures often requires
animals to explore and intervene in the world, which can come
with a risk of death. This suggests an inherent tradeoff be-
tween exploration and exploitation in causal learning. How

do animals address this tradeoff and learn the causal struc-
tures of the world? Recent behavioral and neural evidence
(Jeong et al., Science 2022) has challenged the sufficiency of
reinforcement learning (RL) models in capturing causal learn-
ing and its underlying neural mechanisms. Here, we propose
a novel computational model that captures causal structure
learning, while at the same time preserving the RL paradigm
with an evolutionary bias for death avoidance.

Existing model-based computational frameworks, such as
model-based RL, typically assume predefined world struc-
tures and avoid structure learning. Bayesian inference mod-
els, although capable of learning complete probabilistic struc-
tures, lack biological plausibility due to their high computa-
tional demands. Most existing models also overlook the hu-
man inclination to infer deterministic structures even when
none exist (Redelmeier and Tversky, 1996).

To address these gaps, we propose a computational model
that builds a deterministic causal graph based on both ob-
servational and interventional learning. Our model leverages
a nonlinear transformation of the successor representation
(Dayan, 1993), learned through a basic RL algorithm. Our
model explains various empirical findings, including spatial
navigation, classical conditioning, a mixture of model-based
vs. model-free learning, and information-seeking behavior
that standard RL models cannot capture.

Taken together, our work offers a novel method to bridge
RL and causal learning in a biologically and cognitively con-
strained way. Our findings suggest the deterministic causal
graph as a unifying mechanism for a range of phenomena
studied separately.

Algorithm details We introduce a variant of the succes-
sor representation (SR), which we refer to as transitional
successor representation (tSR). Unlike the standard SR that
learns discounted future occupancy, the tSR directly learns
discounted future transition rates at each time step ¢ in a
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Figure 1: (A) The set of all possible experiences discretized

into states is very large, with some states leading to death. (B)
The sequences observed in life are smaller, and the transition
probabilities between states are important. (C) Learning the
transition successor representation (tSR). (D). Thresholding
the tSR to create a binary matrix. (E). Constructing the de-
terministic causal graph (dCG) using the thresholded matrix.
F)The learned causal graph.

multi-step transition matrix, using a simple temporal difference
learning rule (Fig. 1C):

M(s;,s) —>M(s,,s')—|—(x8§[R(s') (1)

where M(s;,s’) is the tSR matrix describing transitions from
state s, to state s/, o is the learning rate, and 858 (s') is the
temporal difference error:

6§,R(s/) = I(SH-I = S/> +YM (Sl‘+1>s/) _M(Shs/) ) (2)

with I the identity matrix, and y the discounting rate. To obtain
a deterministic causal graph (dCG), Q, we apply a simple
threshold to the probabilistic tSR matrix M (Fig. 1D):

Q(stvsl) =0 (M(S”S,) - T) ) (3)

where ® denotes the Heaviside step function and 1 is the
threshold parameter. Through this nonlinear operation, the
model approximates probabilistic world structures by function-
ally binarizing them, creating a compact causal graph. This
not only captures the human tendency to perceive determin-
istic structures even in the absence, but also makes the algo-
rithm efficient and biologically plausible.

Evolutionary heavy-tailed bias We implement an evolu-
tionary bias into the successor representation, an assumption
that builds in a small probability that any states will eventually
lead to death, as a biological constraint in the model, where
death has an infinitely large negative value. This potential
death always exists in the states that have yet to form a causal
graph. Creating the causal graph eliminates the possibility of
death from states within the graph, providing an intrinsic, in-
finitely large, bonus to discovering deterministic graphs. Due

to the possibility of death, punishment is inherently heavy-
tailed, providing a critical insight to distributional RL. Impor-
tantly, in this algorithm, the agent’s actions are determined by
the causal graph, Q, instead of tSR, M.

Thus our model makes distinct predictions from classic SR
in RL frameworks, boosted by the value of avoiding death. For
instance, the model predicts that the agent first explores to
discover a causal graph. Once the agent identifies the graph
that safely leads to a reward, the agent will exploit the graph
repeatedly. This explore-exploit behavior is consistent with
observed non-instrumental information-seeking. Constructing
the model with multiple discount factors 7y (like in the distri-
butional RL; Masset et al., 2023) enables the agent to learn
causal structures across multiple timescales.

Results

Our causal graph model captures the well-studied mixture of
model-based and model-free learning in the two-step tasks
(Daw et al., Neuron 2011) (Fig. 2A) without resorting to the
dichotomy (Fig. 2B). Our model also captures a wide range
of empirical findings that standard RL models struggle to ac-
count for, such as human structure learning ( Momennejad
et al., 2017), blocking and unblocking in classical condition-
ing (Maes et al., 2018), and information seeking behavior
(Bromberg-Martin and Hikosaka, 2009); as well as recent key
findings on causal learning (Jeong et al., 2022) in animals.
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Figure 2: Predictions of the model on 2-step task. (A). Struc-
ture of the 2-step task. The original tSR for this task is the
same, however the threshold eliminates the rare transitions.
(B) The threshold creates a dCG that influences behavior,
making predictions that can capture both model-based and
model-free learning by tuning the threshold.

As we describe for the 2-step learning task (Fig. 2A), the
model agent builds a deterministic causal graph (Fig 1F) and
generates behaviors that resemble empirical data, while the
standard SR model falls short (Fig 2B).

Our model offers new testable predictions in complex in-
ference and exploration tasks. For example, we can explain
information-seeking (Bromberg-Martin and Hikosaka, 2009)



without specifically bonusing new information, but rather by al-
lowing the inherent value of determinism to boost information-
seeking behaviors. We also predict an increased preference
for information on a longer timescale (as tested in ligaya
2020). We are currently piloting a novel behavioral task aimed
at learning from direct causal interventions.

In sum, our study offers a novel computational framework
to understand causal learning, using an RL algorithm to con-
struct deterministic causal graphs. By incorporating death
as an avoidable consequence of state transitions, our model
explains a wide range of behaviors studied separately as a
consequence of common causal structure learning. Our find-
ings highlight how heavy-tailed punishment distribution with
death may have shaped a range of our instrumental and non-
instrumental behavior.

Acknowledgments

We thank Kim Stachenfeld, Ken Miller, Sashank Pisupati, Is-
abel Berwian, and Rebecca Lysaght. This work is supported
by the BBRF NARSAD Young Investigator Grant (KI), the Saks
Fifth Avenue Transformational Depression Research Award
(K1), and NSF GRFP Fellow ID: 2022342390 (IA).

References

E. S, & Hikosaka, O. (2009,

Midbrain dopamine neurons signal prefer-
ence for advance information about upcoming re-
wards. Neuron, 63(1), 119-126. Retrieved from
http://dx.doi.org/10.1016/j.neuron.2009.06.009
doi: 10.1016/j.neuron.2009.06.009

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P,
& Dolan, R. J. (2011, March). Model-based in-
fluences on humans’ choices and striatal prediction
errors. Neuron, 69(6), 1204-1215. Retrieved from
http://dx.doi.org/10.1016/7j.neuron.2011.02.027
doi: 10.1016/j.neuron.2011.02.027

Dayan, P. (1993, July). Improving generalization for tem-
poral difference learning: The successor representation.
Neural Computation, 5(4), 613-624. Retrieved from
http://dx.doi.org/10.1162/neco0.1993.5.4.613
doi: 10.1162/neco.1993.5.4.613

ligaya, K., Hauser, T. U., Kurth-Nelson, Z., O’Doherty,
J. P, Dayan, P, & Dolan, R. J. (2020, June).
The value of whats to come: Neural mechanisms
coupling prediction error and the utility of anticipa-
tion. Science Advances, 6(25). Retrieved from
http://dx.doi.org/10.1126/sciadv.aba3828 doi:
10.1126/sciadv.aba3828

Jeong, H., Taylor, A., Floeder, J. R., Lohmann, M., Miha-
las, S., Wu, B., ... Namboodiri, V. M. K. (2022, De-
cember). Mesolimbic dopamine release conveys causal
associations. Science, 378(6626). Retrieved from
http://dx.doi.org/10.1126/science.abq6740 doi:
10.1126/science.abq6740

Bromberg-Martin,
July).

Maes, E., Krypotos, A.-M., Boddez, Y., Alfei Palloni, J. M.,
D’'Hooge, R., De Houwer, J., & Beckers, T. (2018,
April). Failures to replicate blocking are surprising and
informative—reply to soto (2018). Journal of Experimen-
tal Psychology: General, 147(4), 603-610. Retrieved
from http://dx.doi.org/10.1037/xge0000413  doi:
10.1037/xge0000413

Momennejad, I. (2020, April). Learning structures: Predictive
representations, replay, and generalization. Current Opin-
ion in Behavioral Sciences, 32, 155—-166. Retrieved from
http://dx.doi.org/10.1016/5.cobeha.2020.02.017
doi: 10.1016/j.cobeha.2020.02.017

Redelmeier, D. A., & Tversky, A. (1996, April).
On the belief that arthritis pain is related to the
weather. Proceedings of the National Academy
of Sciences, 93(7), 2895-2896. Retrieved from
http://dx.doi.org/10.1073/pnas.93.7.2895  doi:
10.1073/pnas.93.7.2895



