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Abstract
Research on the cortical processing of continuous nat-
uralistic speech has shown that the brain represents
speech on different levels of abstraction. Speech is rep-
resented as a continuous acoustic signal, in discrete
phoneme categories or as semantic information on the
level of words. However, it remains unclear if and how the
brain represents the syntax to combine words into larger
meaningful structures. Here, we use multivariable mod-
els to predict the EEG recordings of participants listen-
ing to naturalistic speech. We show that syntactic fea-
tures, derived from automated dependency parsing, im-
prove the prediction accuracy of a baseline model using
acoustic and semantic speech features. While our find-
ings suggests that correlates of syntax can be found in
EEG responses to continuous speech, they also highlight
the need for further research to disentangle syntax from
possible correlated acoustic speech cues.
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Introduction
Over the last decade, numerous studies provided new insights
into how the brain processes speech by presenting continuous
speech in its natural complexity and using computational mod-
els to dissect different components of the recorded neural sig-
nal (Hamilton & Huth, 2020). This revealed patterns of activity
compatible with many different representations of speech sig-
nals such as their acoustic properties, the phonemes they are
composed of, and their meaning (Aiken & Picton, 2008; Di Lib-
erto, O’Sullivan, & Lalor, 2015; Broderick, Anderson, Di Lib-
erto, Crosse, & Lalor, 2018). Despite this success, it is unclear
if and how the brain represents the syntax to combine words
into larger units like phrases and sentences. One seminal
study presented four-word sentences consisting of two two-
word phrases and found that the recorded brain response’s
spectrum resembled sentence and phrase frequency, inde-
pendent of acoustic content (Ding, Melloni, Zhang, Tian, &
Poeppel, 2016). While this study showed neural correlates
of syntax, it used synthesized speech presented at a steady
and invariable frequency, making it unclear whether this gen-

eralizes to naturalistic scenarios. A recent study found syn-
tax features that correlate with activity in specific frequency
bands of the MEG signal, recorded while participants listened
to spoken stories (Zioga, Weissbart, Lewis, Haegens, & Mar-
tin, 2023). Here, we are using the same approach but apply
it to EEG, which has a lower signal-to-noise ration but can
be used in a wider range of contexts. Instead of focusing on
specific frequency bands, we model the full broad-band EEG
signal.

Methods

EEG Data

We analyzed EEG data that were acquired in previous studies
(Di Liberto et al., 2015; Broderick et al., 2018) and contained
neural recordings of 19 participants (age 19-38, 13 male) lis-
tening to 20 segments of an audiobook, each lasting about 3
minutes 1. Data were recorded using a 128-channel EEG sys-
tem (Biosemi) at a 512 Hz sampling rate. Offline, the record-
ings were resampled to 128 Hz, band-pass filtered between
1 and 20 Hz and re-referenced to the global average. Each
channel was standardized by subtracting its mean and divid-
ing by its standard deviation.

Features

We computed the speech signal’s envelope as the absolute
Hilbert transform, band-pass filtered between 1 and 20 Hz.
We also computed the half-wave rectified derivative of the en-
velope to represent onsets in the acoustic energy of the signal.
We estimated the semantic dissimilarity of each word given
its context using a word2vec model (Broderick et al., 2018)
and represented this feature as impulses at the onset of each
word. We included a similar feature, where each impulse had
the value one, to index the onset of words. Finally, we derived
syntactic features using a dependency parsing algorithm that
generates a description of relationships between words in a
sentence. We counted the number of relationships that are
opened, remain open and are closed, as each word is uttered
and represented them as vectors similar to the semantic fea-
tures (Zioga et al., 2023).

1The data are available on OpenNeuro.org (data set ds004408).



Modeling
We predicted EEG recordings at each channel using forward
temporal response functions or TRFs (Crosse, Di Liberto,
Bednar, & Lalor, 2016) and used Pearson’s correlation be-
tween the predicted and recorded EEG as an estimate of
model accuracy. We compared a baseline model using enve-
lope, acoustic onsets, word onsets and semantic dissimilarity,
to a model that also included syntactic features. Each model
was optimized and evaluated using nested cross-validation
loops. In the outer loop one segment was selected for test-
ing and, in the inner loop, the remaining segments were used
to optimize the regularization coefficient λ by leave-one-out
cross-validation. We averaged across all test segments to
obtain an unbiased estimate of model accuracy. For visu-
alization, we computed the models with the same value of
λ = 10000 across all participants and averaged the resulting
syntactic TRFs.

Results
The syntactic TRF consistently predicted brain responses
more accurately compared to the acoustic and semantic base-
line model (one-tailed Wilcoxon signed-rank test for paired
data, W=157, p=0.005). Inspecting the distribution of differ-
ences in accuracy across the scalp (Fig.1) revealed that the
improvements were constrained to central and temporal re-
gions, suggesting that the syntactic features index activity in
auditory regions.

Figure 1: Difference in prediction accuracy between syntax
and baseline model at each channel.

Because forward TRF weights can be interpreted as ex-
pected changes in the response following changes in the pre-
dictor (Haufe et al., 2014), visualizing their time course and
distribution can be indicative of underlying neural processes.
Thus, we averaged the TRFs across all subjects to obtain
time courses for the open, remain and resolve feature. All
TRFs showed strong oscillatory components consistent with
the finding that these features are track activity in the α and β

band (Zioga et al., 2023). To see if the TRFs contained slower
components resembling evoked response potentials (ERPs),
we low-pass filtered them at 5 Hz. Figure 2 shows the TRFs at
a central electrode for the open, remain and resolve feature.
The diverging distributions at a time lag of 260 ms shows that
the features are associated with different parts of the neural
response. However, there is substantial overlap and the pos-

Figure 2: Group average TRFs for the syntactic features at a
central electrode. Dashed line marks the time point where the
topographical distribution of each model is shown.

itive peaks in the open and remain TRF at time lags around
100 ms suggest that the models also index activity related to
low-level acoustic processing.

Discussion

We showed that incorporating syntactic features improves the
TRF’s ability to predict EEG responses to naturalistic speech.
This suggests that correlates of syntax, previously found in
MEG data (Ding et al., 2016; Zioga et al., 2023) are also
present in EEG. In contrast to previous work that tracked
changes in α and β power (Zioga et al., 2023) we predicted
the full broadband EEG signal and found that the syntactic
features are also associated with slower, ERP-like, compo-
nents. The TRFs for the open and remain feature showed
early peaks indicating activity related to low-level acoustic pro-
cessing. While this could be due to leakage between model
features it may also arise from acoustic features that are in-
herently correlated with syntax. It is well known that prosody,
the patterns of stress and intonation, contains cues about the
syntactic structures of speech. For example, speakers tend to
raise their pitch at the end of a question and such changes
in pitch are known to affect EEG responses to naturalistic
speech (Teoh, Cappelloni, & Lalor, 2019). Prosodic repre-
sentation may even arise covertly, in absence of any physical
cues, making it hard to distinguish them from genuine syntax
processing (Glushko, Poeppel, & Steinhauer, 2022). It may
even be that there is no representation of syntax that is en-
tirely separate from the rest of language. While linguists have
long postulated that an infinitely generative system like human
language requires a distinct set of discrete syntactic rules,
the recent success of large language models, which repre-
sent syntax and semantics in a joint embedding space, calls



this dogma into question (Piantadosi, 2023). Future studies
should try to disentangle syntactic and prosodic representa-
tions and test different feature spaces - after all, counting the
number of relationships is a rather crude way of operationaliz-
ing syntax.
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