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Abstract
Topographic organization is a key feature of biological
brains. However, representations within most machine
learning models lack spatial biases, instead manifesting
as disorganized vector spaces that are difficult to visual-
ize and interpret. Here, we make two contributions. First,
we introduce a new family of spatially-constrained topo-
graphic Transformer (”Topoformer”) models. We train a
16-layer Topoformer model on a masked language mod-
eling objective, and demonstrate significant topography
in the learned responses. Second, we investigate an fMRI
dataset of sentence-level responses to 1,000 sentences
and demonstrate that human fronto-temporal language-
responsive areas exhibit topographic response variabil-
ity, variability which shows significant alignment with that
of the Topoformer model. Our results motivate further ex-
amination of functional topography of language represen-
tations in brains and models, along with a task-optimized
approach to topographic modeling more generally.
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Introduction
Biological brains exhibit spatial organization, such as
category-selective areas, broad feature maps, and large-scale
networks. Recent computational neuroscience work has mod-
eled the topographic organization of the ventral visual stream
in vision DNNs by incorporating local smoothness or wiring
cost minimization, resulting in easily visualized smooth func-
tional organization (Margalit et al., 2023; Blauch, Behrmann, &
Plaut, 2022). However, despite progress in natural language
processing (NLP) and application of these models to study
the neural basis of language (Fedorenko, Ivanova, & Regev,
2024), topographical priors have yet to be applied to language
processing models. Our work aims to induce topographic
organization within the Transformer architecture, using local-
connectivity approaches, yielding models we term “Topoform-
ers”. Such models pave the way for a computational descrip-
tion of the topographic organization of language-responsive
cortex.

Methods

Adding topographic priors to self-attention

To encourage topographic organization in Transformer mod-
els, we add spatial biases to two operations of the self-
attention operation (Vaswani et al., 2017), as illustrated in Fig-
ure 1A. The first modification is spatial querying; here, each
token’s query is associated with a local pool of queries from
other tokens, rather than individual keys. A binary intermedi-
ate matrix M ∈ Rd×d , where d is the embedding dimension
and the columns of M determine the spatial pool of queries
associating with a given key. This local pooling of queries pro-
motes local smoothness in representations and ensures spa-
tial correspondence between query and key representations.

The second modification is known as spatial reweighting;
here, we convert the outer reweighting matrix W O to a lo-
cally connected layer W O

local , with strictly positive weights. This
pressures the model towards topographic representations in
the values and attention outputs. More detail on spatial query-
ing and reweighting can be found in the equations of Figure
1A.

Model training and evaluation
We trained a single-head 16-layer Topoformer BERT model
using the Masked Language Modeling objective (Devlin,
Chang, Lee, & Toutanova, 2019). We followed the training
paradigm introduced by Geiping and Goldstein (2022) on the
Bookcorpus-Wikipedia dataset (Zhu et al., 2015). A stan-
dard, non-topographic single-head BERT model with an oth-
erwise identical setup served as a control model. To evaluate
the models’ performance, we followed the General Language
Understanding Evaluation (GLUE) benchmark (Wang et al.,
2019) procedure as in (Geiping & Goldstein, 2022).

Neuroimaging experiment
We examined language organization in 5 native English
speakers using fMRI during a sentence reading task (Tuckute
et al., 2024). Participants read 1,000 diverse 6-word
sentences. After preprocessing, we identified language-
responsive voxels by comparing responses to sentences and
nonwords (from an independent ’localizer’ task) using a weak
positive threshold (t > 1) within a set of 5 broad, anatomi-
cal parcels from prior studies (Lipkin et al., 2022), forming
the ”language network”. Within this network, we extracted
sentence-level responses in the form of beta coefficients de-
rived from GLMsingle (Prince et al., 2022).

Brain-model alignment
Representational alignment was conducted between the hu-
man language network and the final layer Topoformer unit
activations using partial least squares singular value decom-
position (PLS-SVD). PLS-SVD aligns brain responses X and
unit activations Y by computing SVD on their cross-covariance
matrix XTY = UΣV , yielding joint low-dimensional embed-
dings of brain responses and unit activations. Given brain
and Topoformer responses, we can visualize the spatial orga-
nization of individual brain and model SVD components U (i)

and V T (i). Moreover, the alignment of components can be
computed as the correlation of X (i)

c = XtestU (i) and Y (i)
c =

YtestV T (i) using held-out data (20%).

Results
Following training of the Topoformer and a control model,
we observed that the task performance of Topoformer on
the GLUE benchmark (75.3) was similar to that of the non-
topographic model counterpart (76.9), suggesting that our
added spatial constraints do not significantly hinder task per-
formance.

To interpret the resulting organization, we performed unit-
level selectivity analyses in the Topoformer model, using 8
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Figure 1: Brain-like topographic organization in a Topoformer model. A. Spatial querying and reweighting operations convert
non-spatial self-attention operations to spatial versions, encouraging the development of topographic organization. The figure
illustrates querying for a pair of tokens and reweighting for a single token, however when processing a full sequence, there
is a 2D grid of the form shown here for each token. Each heatmap shows the loadings of the second PC of responses in a
1-layer toy model (top: control model, bottom: Topoformer model with spatial querying and reweighting). B. Selectivity of the
Topoformer BERT model for two “test suites”: ”Concreteness” consists of concrete vs. abstract sentences, and ”Agreement”
consists of syntactically correct sentences vs. manipulating one word to violate the subject-verb agreement of the sentence
(Marvin & Linzen, 2018). Selectivity was quantified using the t-statistic with significance p as s = (−sign(t) log10(p)). Condition
decoding from unit activations is given above the heatmaps. C.,D. Low-dimensional topographic component alignment revealed
with partial-least squares singular value decomposition (PLS-SVD). C. plots the weights of PLS-SVD components, visualizing
their spatial structure in both the model and brain. D. plots the cross-validated alignment of PLS-SVD component scores, with
error bars over 5 participants.

test suites, and performed binary condition decoding using
population activity. We plot the results for 2 examples (Con-
creteness and Agreement) in Figure 1B. Whereas significant
selectivity and multivariate decoding was seen for concrete-
ness, less was seen for agreement. These results demon-
strate a significant topographic sensitivity for concreteness but
not syntactic agreement.

Next, using PLS-SVD (see Methods) we examined the
alignment of language representations in the human language
network and the Topoformer model. Figure 1C shows example
aligned component weights between the first three brain and
model components, using the first participant and the Topo-
former layer 15 keys representation. Figure 1D generalizes
this analysis across all participants and sublayers, again us-
ing layer 15 of the model. In general, the first two compo-
nents were significantly aligned for each sublayer, whereas

later components were less aligned. This result demonstrates
that the low-dimensional variability can be aligned in the topo-
graphic representations of the human language network and
Topoformer language model.

Conclusion
Our work demonstrates that Transformer models can be
trained to exhibit topographic organization with similarity to
that of language cortex in the human brain, and highlights the
presence of yet unexplored topographic organization within
the language network. The results motivate further work both
in understanding cortical organization of language, and in
yielding interpretable topographic machine learning models
for language as well as other domains.
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