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Abstract
Quantitative comparisons of neural population dynam-
ics across biological systems—e.g. different subjects,
animal species, or brain areas—and to artificial net-
work dynamics are of longstanding interest to systems
neuroscience. Many metrics of functional, population-
level similarity have been proposed including Represen-
tational Similarity Analysis (RSA), Centered Kernel Align-
ment (CKA), and shape distances. However, we still have
a poor grasp on fundamental questions: How many neu-
rons, trials, and behavioral conditions do we need to ex-
perimentally measure in order to accurately assess the
similarity of two neural populations? Here, we mathe-
matically derive concrete answers to these questions for
the Procrustes shape distance—a measure of representa-
tional distance with desirable theoretical properties (sym-
metry and triangle inequality) (Williams, Kunz, Kornblith,
& Linderman, 2021). We find that the problem is challeng-
ing for high-dimensional manifolds—for example, to com-
pensate for a twofold increase in dimensionality, there
must be a fourfold increase in the number of sampled
conditions. To mitigate these challenges, we introduce
a new method-of-moments estimator with a tunable bias-
variance tradeoff. We show that this estimator achieves
superior performance to standard estimators, particularly
in high-dimensional settings. Furthermore, since our ap-
proach bounds the bias and variance of the estimate, it
naturally produces a confidence interval, which we show
to be an accurate reflection of uncertainty in simulation
and on semi-synthetic experimental datasets with estab-
lished ground truth. Finally, we leverage this new estima-
tor to analyze mouse visual cortical responses to 2800
natural images. Thus, we lay the foundation for a rig-
orous statistical theory for high-dimensional shape anal-
ysis, and we contribute a new estimation method well-
suited to practical scientific settings.

Keywords: representational geometry, shape metrics, dissimi-
larity metrics.

We begin by considering a simple setting where each neu-
ral network is a deterministic map. A collection of K neural
systems can then be viewed as a set of functions, each de-
noted hi : Z 7→ RN for i ∈ {1, . . . ,K}. Here, Z is a feature
space and N can be interpreted as the number of neurons
in each system (e.g. the hidden layer size or the number of
recorded neurons in a biological experiment).

Motivated by the shape theory literature (Kendall et
al., 2009; Williams et al., 2021), we consider estimat-
ing the Procrustes size-and-shape distance, ρ, and Rie-
mannian shape distance, θ, between neural representa-
tions. Let hi and h j denote neural systems that are mean-
centered and bounded, i.e. E[hi(z)] = E[h j(z)] = 0 and
∥hi(z)∥2,∥h j(z)∥2 <

√
N almost surely. Throughout, the ex-

pectations are taken over z ∼ P, a distribution over net-
work inputs, and the bounded assumption can be achieved
achieved by assuming each neuron has a maximum firing
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Figure 1: (A) Classical shape distances (Kendall et al., 2009)
can be used to provide a rotation-invariant distance between
neural representations (Williams et al., 2021). Given two la-
belled points clouds in N-dimensional space (left and middle),
the distance is computed after an optimal orthogonal transfor-
mation is chosen to align the point clouds (right). (B) Our abil-
ity to estimate the shape distance is related to M, the number
of stimuli. As M increases (left to right) the number of sam-
pled points along the underlying manifold increases, and we
are better able to resolve shape differences.

rate. For brevity we focus on the the Procrustes shape
distance ρ(hi,h j) and which can be defined as ρ(hi,h j) =

minQ∈O(N)

√
E∥hi(z)−Qh j(z)∥2

2 where O(N) denotes the
set of N × N orthogonal matrices. It is well-known ρ can
be written in terms of the covariance and cross-covariance
matrices Σii = E[hi(z)hi(z)⊤], Σ j j = E[h j(z)h j(z)⊤], Σi j =
E[hi(z)h j(z)⊤] where ∥Σi j∥∗ denotes the nuclear norm (or
Shatten 1-norm) of the cross-covariance matrix: ρ2(hi,h j) =
Tr[Σii]+Tr[Σ j j]−2∥Σi j∥∗.

Nonasymptotic Bounds on Plug-in Estimator Perfor-
mance. Suppose we are given M independent and iden-
tically distributed network inputs z1, . . . ,zM ∼ P. How well
can we approximate the shape distances between two net-
works, as a function of M? The standard approach (Williams
et al., 2021) is to use a plug-in estimator by substituting
the empirical covariances Σ̂ii =

1
M∑

M
m=1hi(zm)hi(zm)

⊤, Σ̂i j =
1
M∑

M
m=1hi(zm)h j(zm)

⊤ to approximate the true covariances:
ρ̂2(hi,h j) = Tr[Σ̂ii]+Tr[Σ̂ j j]−2∥Σ̂i j∥∗

We showed under our mean zero and bounded assump-
tions that with at least at least 95% probability, the following
upper bound holds:

|ρ̂2 −ρ2|
N

≤ 2N log(2N)

3M
+

2N
√

log(2N)

M1/2

+

(
1

M1/2 +
2

N1/2M1/2

)√
2log120

(1)

We can gain intuition for eq. 1 by ignoring logarithmic factors
and noticing that the second term dominates. Then, roughly
speaking, eq. 1 says that we can guarantee the plug-in error
decreases as a function of NM−1/2. Thus, for any fixed N,
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Figure 2: Validation of estimator on synthetic data. (A) The
moment based estimator (orange) compared to plug-in esti-
mator (blue) in simulation with standard deviation bars calcu-
lated across simulations. (B) Effect of increasing sample size
when moment estimator is constrained to have a bias less
than 5%. (C) Effect of increasing dimensionality.

we need to increase M by a factor of 4 to decrease estimation
error by a factor of 2. Furthermore, when comparing higher-
dimensional neural representations (↑ N) we need to sample
more landmarks—if N increases by a factor of 2, then M must
increase by a factor of 4 to compensate.

We also sought to understand if the bound is tight and prove
under our assumptions, the rate cannot be improved beyond
M−1/2 but could potentially improved by a factor of N1/2.

A New Estimator with Controllable Bias. The results in
the previous section show the plug-in estimator of ∥Σi j∥∗ has
low variance but large and slowly decaying bias. Hence we
developed an alternative estimator that is nearly unbiased.
First, note that the eigenvalues of Σi jΣ

⊤
i j correspond to the

squared singular values of Σi j. Thus, Tr[(Σi jΣ
⊤
i j)

1/2] = ∥Σi j∥∗,
and so we can reduce our problem to estimating the trace
of (Σi jΣ

⊤
i j)

1/2, which is symmetric. Leveraging ideas from a
well-developed literature (Lin, Saad, & Yang, 2016; Kong &
Valiant, 2017; Adams et al., 2018), we proceed to define the
pth moment of this matrix as Wp = Tr[(Σi jΣ

⊤
i j)

p] = ∑
N
n=1 λ

p
n

where λ1, . . . ,λN denote the eigenvalues of Σi jΣ
⊤
i j . Now, for

any function f : R 7→R and symmetric matrix S with eigenval-
ues λ1, . . . ,λN , we define Tr[ f (S)] = ∑i f (λi). So long as f is
reasonably well-behaved, we can approximate it using a trun-
cated power series with P terms where γ0, . . . ,γP are scalar
coefficients for the terms in the power series. In our case, we
approximate f (x) =

√
x.

We thus estimate ∥Σi j∥∗ by (a) specifying an estimator of
the top eigenmoments, W1, . . . ,WP, and (b) specifying a de-
sired set of scalar coefficients γ0, . . . ,γP. To select the scalar
coefficients, we propose an optimization procedure that trades
off between an upper bound on bias and variance in the esti-
mate of ∥Σi j∥∗. The estimator includes a user-defined param-
eter that controls this trade-off in terms of a bias upper bound.

Validation on Synthetic and Neural Data. We first com-
pared the bias of the plug-in estimator to that of the moment-
based estimator on synthetic data across a range of ground
truth shape similarities (Fig 2A) and as we increase the num-
ber of measured stimuli (Fig 2B) or number of neurons (Fig
2C). Next we study our estimator applied to neural data:
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Figure 3: Validation of estimator on neural data (Stringer et
al., 2019) (A) Comparison of estimators when ground truth
similarity of neural data is set to 0. The estimator is applied to
three disjoint sets of random stimuli for each recording (n= 7).
The estimated maximal bias is plotted in dark orange area; the
confidence interval in light orange. (B) Same simulation as (A)
except ground truth is 1.

calcium recordings from mouse primary visual cortex in re-
sponses to a set of 2,800 natural images repeated twice
(Stringer et al., 2019). We constructed populations of neu-
rons (N = 40 each) where the ground truth was 0 (Fig. 3A)
and 1 (Fig. 3B). As seen in Fig. 3A, the moment based esti-
mator can accurately determine when the similarity is low in
noisy neural data whereas the plug-in estimator cannot.

Discussion. Here, we theoretically characterized “plug-in”
estimates of shape distance in high-dimensional, noisy, and
sample-limited regimes. We found that these estimates tend
to over-estimate representational similarity when the true sim-
ilarity is small. Further, they require a large number of sam-
ples, M, to overcome this bias in high-dimensional regimes.
Eq. 1 provides precise guarantees on the worst-case perfor-
mance of plug-in estimators. These bounds can guide the
design of biological experiments, including pre-registered sta-
tistical power analysis. However, in terms of the number of
samples, the bounds definitively establish that the plug-in er-
ror decays at a rate proportional to M−1/2.

An equally important contribution of our work is to provide a
practical method to (a) reduce the bias of plug-in estimators of
shape distance and (b) enable practicioners to explicitly trade
off estimator bias and variance. When employed on a biolog-
ical dataset published by (Stringer et al., 2019), we find that
shape similarity estimates are highly uncertain, revealing the
challenging nature of the problem in high dimensions and with
noisy data. Importantly, this degree of uncertainty is not obvi-
ous from the procedures and plug-in estimates advertised by
existing work on this subject.

In summary, our work characterizes the challenges of es-
timating shape distances in high-dimensional spaces. While
shape distances can be well-behaved in certain settings (e.g.
in noiseless artificial networks with many sampled conditions),
our results suggest the need for carefully designed experi-
ments and estimation procedures in sample-limited regimes.
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