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Abstract: 

The central computational challenge of speech 
recognition is that instances of the same class (e.g., 
word) vary enormously in their acoustics. Traditional 
auditory models cannot explain “invariant” speech 
recognition and have difficulty predicting human cortical 
responses to complex natural stimuli such as speech. 
Deep neural network (DNN) models trained on 
challenging invariance tasks such as speech recognition, 
have shown promise as neural encoding models, but it 
remains unclear whether they can explain invariant 
representations of speech in the human auditory cortex. 
To answer this question, we measured cortical responses 

to speech with and without acoustic variation using 
spatiotemporally precise intracranial recordings from 
neurosurgical patients. We found that representations of 
speech become increasingly invariant to acoustic 
variation in non-primary regions, consistent with 
hierarchical theories of functional organization. We also 
found DNN models trained on challenging invariance 
tasks predicted cortical response timecourses to speech 
better than standard acoustic models, with later network 
layers better predicting non-primary regions. Yet, all of 
the tested DNN models had difficulty predicting the 
hierarchical organization of invariance in the auditory 



cortex. These results suggest that the representational 
invariances learned by current DNN models may not align 
with those in the auditory cortex. 
Keywords: deep neural network; speech; invariant 
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Motivation and Background 
Speech recognition is computationally challenging 
because instances of the same class (e.g., a word) vary 
enormously in their acoustics, due to a myriad of factors 
(e.g., imperfect sound transmission, reverberation, 
background noise, variation in speaker articulation). 
The auditory system is thought to solve this challenge 
by transforming representations of sound across 
multiple neuronal processing stages so as to encode 
sound information in a manner that is robust to acoustic 
variation (Kell et al., 2018; Sharpee et al., 2011). 
Understanding and modeling how the auditory system 
accomplishes invariant coding is central to 
understanding the neural and computational 
mechanisms of speech perception (Keshishian et al., 
2023), and how they are impaired by neurological 
disorders (Moore, 1996).  

Auditory models have been developed that can 
effectively predict neural responses early in the auditory 
pathway (e.g., auditory nerve, inferior colliculus) 
(Drakopoulos et al., 2021; Nelson & Carney, 2004). 
These models, however, are unable to explain the 
impressive speech recognition capacities of human 
listeners and have difficulty predicting neural responses 
to complex natural sounds in the human auditory cortex 
(Kell et al., 2018). Deep neural networks (DNNs) have 
generated excitement as perceptual and neural models 
over the past decade because they can be trained to 
perform challenging invariance tasks such as speech 
recognition at human levels, and the features learned 
from these models have been found to be predictive of 
neural responses throughout sensory cortex (Kell et al., 
2018; Kriegeskorte, 2015; Yamins et al., 2014).  

Yet, compared with the visual cortex, much less is 
known about whether task-trained DNNs are capable of 
serving as effective neural models of the human 
auditory cortex. There is growing evidence that the 
human auditory cortex has specialized computational 
mechanisms for representing speech and music that 
are not widely present in other species (Landemard et 
al., 2021), and many human neuroimaging methods, 
such as fMRI, lack the spatiotemporal precision to track 
rapidly varying responses to speech in the human 
auditory cortex (Kell & McDermott, 2019). One prior 
study found evidence that DNNs can predict 
intracranially recorded responses to clean speech in the 
human auditory cortex better than standard acoustic 
models (Li et al., 2023), but it remains unknown whether 

these models can explain invariant speech 
representations in the presence of challenging forms of 
acoustic variation. 

Approach and Results 
We measured human cortical responses to speech with 
and without additional acoustic variation from 13 
neurosurgical patients implanted with stereotactic depth 
electrodes at the University of Rochester Medical 
Center and the University of Iowa Hospital and Clinics. 
We tested many different types of acoustic variation: 
spectral filtering (low-pass, bandpass, or high-pass 
filter), reverberation (convolution with 12 different 
naturally recorded impulse responses; Traer et al., 
2021), background noise (12 different backgrounds; 10 
dB signal-to-noise ratio), and variation in voicing (by 
replacing the periodic excitation of speech with a noise 
excitation, simulating whispering). The type of acoustic 
variation changed every ~4 seconds. We correlated the 
broadband gamma (70-140 Hz) response timecourse of 
each electrode to speech with and without acoustic 
variation to measure the strength of invariance (Fig 1A) 
and divided this correlation by its maximum possible 
value, quantified as the reliability of each electrode’s 
response across two repetitions of the same stimulus. 
Electrodes were localized on the reconstructed cortical 
surface, and we used each electrode’s distance to 
primary auditory cortex (TE1.1) as a measure of its 
hierarchical position in the auditory cortex (Fig 1B) 
(Norman-Haignere et al., 2022). 

We found that the strength of invariance increased 
substantially with distance from primary auditory cortex 
(Fig 1B) (p < 0.01 via hierarchical bootstrapping across 
subjects and electrodes), consistent with theories of 
hierarchical functional organization (Kell et al., 2018). 
To test whether this change in invariance could be 
predicted from contemporary DNN models, we fit 
encoding models mapping the activations from each 
layer of a task-trained DNN onto the response of each 
electrode (cross-validated, regularized regression). We 
tested two convolutional neural network models 
(CochResNet50, CochCNN9) that were explicitly 
trained to recognize a “foreground” word and speaker in 
addition to a “background” environmental sound 
(Tuckute et al., 2022), as well as a self-supervised, 
Transformer model (HuBERT) with good transfer 
performance on invariant speech recognition tasks 
(Hsu et al., 2021). For comparison, we fit encoding 
models using a standard spectrotemporal model, with 
strong prediction accuracy in human auditory cortex 
(Kell et al., 2018). Because our DNNs were acausal, we 
allowed each model a single global time-lag to align the 



model features with the neural response (for fairness, 
the same was done for the spectrotemporal baseline). 
The time-lag and best-fitting DNN layer were selected 
in validation data, separate from train and test data. 

We first measured the overall model prediction 
accuracy by correlating the measured and model-
predicted response timecourse for each electrode. For 
all three DNN models, we observed a highly consistent 
improvement in prediction accuracy relative to the 
spectrotemporal baseline model (p < 0.001 for all 
DNNs). We also found that all three models replicated 
hierarchical cortical organization, with later layers better 
predicting more non-primary regions (Fig 1C) (p < 
0.001 for all DNNs). These findings replicate prior work 
showing that DNNs trained on challenging speech tasks 
learn features that are predictive of cortical responses 
in the human auditory cortex (Kell et al., 2018; Li et al., 
2023; Tuckute et al., 2022).  

To test whether the DNN models could explain the 
hierarchical organization of invariance, we correlated 
the predicted response from each model to speech with 
and without variation (Fig 1D), as was done for our 
neural data (Fig 1A). We found that the predicted 
invariance was quite similar across the auditory cortical 
hierarchy (Fig 1D, middle panel) (p > 0.1 for all models) 
in contrast with what we observed in our neural data 
(Fig 1B) (p < 0.05 for an interaction between the neural 
data and model predictions) and the DNN models did 
not perform better than our acoustic baseline in 
predicting the pattern of invariance across auditory 
cortex (Fig 1D, right panel). This finding suggests that 
despite capturing some aspects of hierarchical cortical 
organization (Fig 1C), these models have difficulty 

predicting the hierarchical organization of invariance in 
the auditory cortex. This failure highlights an important 
limitation of existing DNN models to explain 
representational invariances in the auditory cortex, 
providing a challenge and opportunity for future 
research aimed at improving cortical encoding models.   
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