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Figure 1: Predicting neural responses for out-of-distribution images. (a) DNN-based Encoding models of the visual cortex.
A DNN was used to extract high-level image features, which served as input to a linear model trained to predict neuronal
responses from the macaque IT cortex. (b) Constructing multiple OOD Train-Test splits. For every session, image-computable
metrics (Hue, Contrast, Intensity) were calculated for all images and the 85th percentile value served as the cutoff—Images with
metric lower than the cutoff served as the train split, with remaining images serving as the corresponding OOD test split. Thus,
4 such test splits were constructed per session—OOD Hue, OOD Contrast, OOD Intensity, and OOD Categories splits. (c) Ratio
of Performance (as measured by regression R2) on In-Distribution and OOD test splits. For all shifts, there is sharp drop in
performance suggesting that DNN-based models of neural predictivity do not generalize well under distribution shifts.

Abstract
We characterize the generalization capabilities of DNN-based
encoding models when predicting neuronal responses from
the primate visual ventral stream. Using a large-scale dataset
of neuronal responses from the macaque IT cortex to over
11,000 images, we investigate the impact of distribution shifts
on neural activity by dividing the images into multiple training
and Out-Of-Distribution (OOD) test sets. This includes dif-
ferent types of OOD domain shifts in the form of image con-
trast, hue, intensity, and semantic object categories. Over-
all, we find models performed much worse at predicting neu-
ronal responses for out-of-distribution images, dipping to as
low as 20% of the performance on in-distribution test images.
Furthermore, we found that this generalization performance
under OOD shifts can be well accounted by an image simi-
larity metric—the cosine distance between image representa-
tions extracted from a pre-trained object recognition model is
a strong predictor of neural predictivity under different distri-
bution shifts (R2 =−0.76).
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Introduction
Deep Neural Networks (DNNs) trained for object classifi-
cation have remarkably similar internal feature representa-

tions to neural representations in the primate ventral visual
stream (Bashivan, Kar, & DiCarlo, 2019; Ponce et al., 2019).
This has led to the widespread use of encoding models of the
visual cortex utilizing linear combinations of pre-trained DNN
unit activities (Yamins et al., 2014; Kriegeskorte, 2015), as
highlighted in Fig. 1(a).

However, DNNs struggle with generalization under distri-
bution shifts, particularly when faced with out-of-distribution
(OOD) samples (Hendrycks & Dietterich, 2019; Madan,
Henry, et al., 2022; Madan, You, Zhang, Pfister, & Kreiman,
2022). This same difficulty at generalization may also affect
DNN-based neural prediction. Recent work has investigated
the impact of OOD categories on neural predictivity (Ren &
Bashivan, 2023). Here, we show that many simplistic distri-
bution shifts in the form of image contrast, hue, or intensity
can break DNN-based models of the visual cortex, resulting
in sharp drops in neural predictivity. Furthermore, we identify
a suitable distance metric that accounts for neural-encoding-
model generalization performance—image similarity as mea-
sured by cosine distance in the ResNet18 activation space.

Constructing out-of-distribution data splits

We collected extracellular electrophysiological responses
from macaque Inferior Temporal (IT) Cortex to 11,000 unique
images, across 49 sessions. For every session and each
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Figure 2: Image similarity drives generalization performance. (a) Comparing performance on new test samples from within
the train distribution (In-Distribution) to test sets increasingly further away from the test distribution as measured by Cosine
distance in ResNet feature space. Neural predictivity drops sharply as distance from training distribution increases. (b) Cosine
Distance in ResNet feature space is a strong predictor for generalization accuracy. (Pearson R2 =−0.76)

.

domain-shift condition, images were divided into two splits—a
training split used to train the linear encoder model and a test-
ing split used to evaluate the linear model. One split was made
for each type of shift—Category, Hue, Contrast, and Intensity.
For category split, a random subset of categories was held
out from linear-model fitting. For image-computable metrics
(e.g., Hue), the metric was computed for every image and the
85th percentile value served as the cut-off. Images with the
metric value (e.g., Hue) less than the cut-off were assigned to
the train split, and the remaining 15% served as the OOD test
split. 4 OOD splits were made per session.

To investigate the relationship between image-similarity and
neural predictivity, we construct 3 additional test splits. Start-
ing with a random image in a session, we first sort all images
based on this distanced. Images are then divided into three
chunks. The first serves as the training + In-Distribution test
split. The second is the Near OOD test split. Finally, the last
chunk is the Far OOD split.

Results and Discussion
Ridge Regression was used to learn neural predictivity on
a per-session basis. The regression model took as input
ResNet18 activations (last layer) and predicted IT neuronal re-
sponses to these images. Note that the ResNet18 model (pre-
trained on ImageNet) was not fine-tuned. For each session,
performance is measured as the regression R2 normalized by
the self-consistency of neurons. All results report mean per-
formance over sessions, with error bars reporting the SEM
(Standard Error of the Mean).

Neural Prediticivity under distribution shifts
The neural predictivity dropped under distribution shifts in
comparison to predictivity for in-distribution images (Fig. 1
(c)). We reported the performance ratio between each type
of OOD shift and an InD test set; ratios less than 1 reflect
drop in performance. The drop is modest for held-out cate-
gories (0.84) and severe for Hue (0.46), Contrast (0.44), and

Intensity (0.2). Thus, DNN-based models of the visual cortex
generalize poorly out of the training data distribution even for
shifts in low-level image features.

Image similarity drives generalization performance

We find that image similarity under distribution shifts largely
explained the relative neural predictivity (Fig. 2). Specifically,
the similarity between the train and test images, as measured
by the cosine distance between ResNet image features (acti-
vations of the pre-final layer), is a strong predictor for neural
predictivity under OOD shifts. Fig. 2 (a) shows model per-
formance on test sets at various distances from the training
distribution. As the train-test distance increases, performance
drops significantly (p < 0.001, two-sided t-test). Furthermore,
Fig. 2(b) represents individual train-test splits in the grouped
results Fig. 2(a). We found the Pearson Correlation Coefficient
(R2) to be −0.76 suggesting that neural response prediction
under OOD shifts is largely explained by image similarity.

Conclusion

These results reveal a deep problem in modern models of the
visual cortex: good prediction is limited to the training im-
age distribution. Simple distribution shifts break these mod-
els, consistent with broader findings that the underlying Deep
Neural Networks are brittle to OOD shifts. Going one step
further, we introduce an image-computable metric that sig-
nificantly predicts the generalization performance under such
distribution shifts. Together, we hope these contributions can
facilitate future work to investigate and mitigate the general-
ization problem of state-of-the-art visual cortex models.
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