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Abstract: 

The mapping from the visual field to V1 can be 
approximated by a log-polar transform. In this domain, 
scale is a left-right shift, and rotation is an up-down shift. 
When fed into a standard shift-invariant convolutional 
network (CNN), this provides scale and rotation 
invariance.  However, translation invariance is lost. This 
is compensated for by multiple fixations on an object. 
Due to the high concentration of cones in the fovea with 
the dropoff of resolution in the periphery, fully 10 
degrees of visual angle take up about half of V1, with the 
remaining 170 degrees (or so) taking up the other half. 
This layout provides the basis for the central and 
peripheral pathways. Simulations with this model closely 
match human performance in scene classification, and 
competition between the pathways leads to the 
peripheral pathway being used for this task. Remarkably, 
despite the property of rotation invariance, this model 
provides a novel explanation for the inverted face effect. 
We suggest that using Euclidean image coordinates is 
the wrong prior for models of primate vision.  

Keywords: Primate vision; log-polar transform; deep 
learning; face inversion effect; scene perception. 

Introduction 

Well-trained deep convolutional neural networks 
(CCNs) have provided the best model so far of primate 
vision (Kietzmann, et al., 2019; Yamins, et al. 2014; 
Storrs, et al. 2021), with early layers predicting 
activation in early visual areas in monkey cortex, and 
deep layers predicting activation of IT cortex. An 
advantageous property of CNNs is their built-in 
translation invariance. Other invariances, such as size 
and rotation, must be learned from the training data. 

Here we propose that this built-in prior, translation 
invariance, is not the best one to account for how 
primate vision works. It is well-known that the retina is 
foveated, with a high concentration of (cone) 
photoreceptors in the fovea and foveola, and a nearly 
linear drop-off of rods from the center to the peripheral 
region of the retina (Curcio, et al., 1990). Second, the 
way in which the fibers innervate V1 leads to a 
coordinate system change from Euclidean (x,y) 

coordinates to polar (r, ) coordinates. In particular, due 

to the falloff of photoreceptors from central to peripheral 
vision, the mapping is actually well approximated by a 

(log r, ) coordinate system (Polimeni, et al., 2006). 

This representation leads to scale changes becoming 
a left-right shift (equivariance), and rotation becoming 
an up-down shift (equivariance). See Figure 1. When 
this representation is input to an otherwise standard 
convnet, we get scale and rotation invariance due to the 
translation invariant property of convolutional networks. 
However, translation invariance in the original domain 
is lost. We make up for this by training on multiple 
fixations (Figure 2). Note that in this representation, we 
can think of fixating different locations on the face as a 
form of autonomous data augmentation. Furthermore, 
with central vision on one side, and peripheral vision on 
the other, the representation is now formatted such that 
we can have a central pathway and a peripheral 
pathway arising from this (Figure 3).  

Experiments with The Model 2.0 

We call this model “The Model 2.0” (TM2.0), following 
on earlier work with a shallower version called The 
Model™ (Cottrell & Hsiao, 2011). The input image is 
foveated, log-polarized, and split into central and 

 
Figure 1. Log-polar equivariances. (a) Scale. (b) Rotation. 

 
Figure 2. The effect of differing fixations on the log-polar 

representation; this results in self-augmentation of the data. 



 
Figure 3. Original image (left), central & peripheral pathways. 

peripheral images. The log-polar format separates 
central from peripheral input and supports two 
pathways, as shown in Figure 3, corresponding to the 
central and peripheral pathways in humans and 
primates. The model’s structure is consistent with the 
various functional distinctions in humans across the 
mid-fusiform sulcus: central/peripheral, faces/places, 
small/large (Grill-Spector & Weiner, 2014). The two 
pathways compete to solve the problem, using a 
mixture of experts design (Jacobs et al., 1991). 

An example of importance of the central/peripheral 
distinction was highlighted in a series of experiments 
reported earlier (Wang & Cottrell, 2017). We compared 
TM2.0 to human data from an experiment by Larson & 
Loschky (2009). In L&L’s experiment, subjects were 
asked to verify whether a scene was a certain category 
or not. They were shown stimuli masked in such a way 
that either the central (scotoma) or peripheral (tunnel 
vision) portions of the stimulus were masked to different 
degrees.  TM2.0 learned to use the peripheral pathway 
for this judgment, consistent with the faces/places 
distinction, and L&L’s finding that peripheral vision is 
more efficient for scene recognition. Furthermore, 
TM2.0 demonstrated an excellent fit to the subjects’ 
performance. Critically, the fit to the data improved the 
more anatomical constraints were used (standard CNN 
< Foveated input < Log-polar input). TM2.0 also closely 
matched the “critical radius”, the point that produces 
equal scene recognition performance between the two 
conditions. For human subjects, it was 7.48° degrees; 

for the model, it was 8.0°, not significantly different from 

the human result. 

A potential puzzle with a rotation invariant model is: 
How could it possibly account for the face inversion 
effect, that inverted faces are much harder to recognize, 
match, and remember than upright faces (Farah, 
Tanaka & Drain, 1995; Kohler, 1940; Yin, 1969)? The 
explanation lies in a critical distinction between the 
representation of scale and rotation invariance. Scale is 
just a shift left or right. However, rotation is a circle 
group, but the cortex is flat, not cylindrical. In V1, the 
representation goes from 90 degrees to 270 degrees. 
When an object is rotated, part of it “falls off” the top and 
reappears at the bottom (Figure 1(b)): Notice that for 
small rotations, Elon’s nose is next to his left eye, but 

after inversion, it’s next to his right eye – a different 
configuration of his features. 

In face recognition, a form of visual expertise, the 
configuration of features is important, commonly called 
holistic processing (Young, Hellawell & Hay, 1987). In 
the log-polar representation, the facial features, the 
nose, the eyes, etc., stay upright (Fig. 1b), but their 
configuration differs when the face is inverted. This in 
consistent with visual scientists’ common interpretation 
of face inversion effect: Since the configuration is 
disrupted, human subjects resort to feature processing 
(Farah & Tanaka, 1993).  

This qualitative observation is borne out in 
experiments comparing TM2.0 with a vanilla convnet. 
To model face processing experience over 
development, we trained the networks to gradually 
learn more faces, starting with 4, then 8, etc., until they 
learned 128 faces. Faces were presented at random 
tilts from -15 to +15 degrees. At each stage of training, 
we compared the performance of the network on the 
upright faces in the holdout set to performance on the 
same faces inverted; this gap is our measure of the 
inversion effect. As the network became more of a face 
expert, the inversion effect increased. The vanilla 
convnet’s performance on inverted faces fell nearly to 
chance (5%), while TM2.0 was still able to perform at 
30%, which is more consistent with human 
performance. In addition, the inversion effect was 
similar when TM2.0 was trained to be a dog or car 
expert, consistent with the expertise hypothesis 
concerning face recognition (Diamond & Carey, 1986; 
Gauthier & Tarr, 1997). Moreover, the inversion effect 
was much smaller for objects trained at the basic level 
(screwdriver, ladle, dumbbell, etc.). Objects known at 
the basic level (Rosch et al. (1976) are recognized 
based on their features; configuration does not matter 
as much (Karimi-Rouzbahani et al., 2017). Finally, 
houses, which are a mono-oriented object, fell between 
objects and faces, cars, and dogs. This is also what Yin 
(1969) found: In a recognition experiment, subjects 
were worst at inverted faces, then inverted houses, then 
inverted objects.  

Conclusions 

We have argued here that, as models of primate 
vision, the standard CNN has the wrong prior for 
representing images. While the standard approach has 
the advantage of being relatively translation invariant, it 
is severely disrupted by inversion of faces.  

On the other hand, the anatomical data shows that 
the transformation from the visual field to V1 is well 
approximated by a log-polar transform. This 
representation has advantages in that, when given to a 
standard CNN, results in scale and rotation invariance. 



Translation invariance is lost, but can be remedied in 
the same way we do; by fixating objects of interest at 
multiple locations. Our experiments with this model 
demonstrate a better fit to human data than a standard 
CNN in both scene, face, and object processing, and 
provides a novel explanation for the face inversion 
effect. We conclude that the Euclidean representation 
of the inputs is the wrong prior for models of the primate 
visual system. 
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