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Abstract
Humans excel at face recognition, relying on a special-
ized system whose representation of familiar and un-
familiar faces have been debated. Some would argue
that unfamiliar and familiar faces are processed in the
same way, while others claim otherwise. Similarly, ar-
tificial neural networks (ANNs) have shown remarkable
abilities, prompting discussions on their similarities to
human face processing and their use as models of the
brain. This study employs Convolutional Neural Networks
(CNNs) and Magnetoencephalography (MEG) to explore
the signatures of face recognition and familiarity, and in-
vestigate whether the face selective areas in the brain are
specialized only for faces (domain-specific) or are devel-
oped for more general purposes (domain-general). Our
findings reveal distinct brain responses: occipital areas
distinguish faces from non-faces, while fusiform and in-
ferior temporal areas engage in familiar face recognition.
When training our ANNs on face recognition, we observe
significant results supporting the idea of domain-specific
brain regions for faces. Our findings shed new light on
the temporal dynamics of familiar versus unfamiliar face
processing in the visual cortex and more globally, high-
light the potentials of combining ANNs and MEG to un-
cover the neural mechanisms that mediate face process-
ing in humans.
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Introduction
Humans are remarkably adept at face recognition. We effort-
lessly recognize and categorize familiar faces. This ability re-
lies on group of brain regions with different degrees of special-
ization (Haxby et al., 2001; Apurva et al., 2004; Yovel & Kan-
wisher, 2005). The concept of face familiarity has been a topic
of extensive research. Some studies have suggested that the
an electrophysiology face perception component (M170) only
appears in response to familiar faces, while others claim that
it appears for all faces, with a later component (M400) linked
more to familiarity (Megreya & Burton, 2006; Johnston & Ed-
monds, 2009; Dobs, Isik, Pantazis, & Kanwisher, 2019). An-
other key debate centers on how the brain represents faces.
Some studies have advocated for domain-specific brain spe-
cialization dedicated to face processing, while others have
proposed domain-general face representation (Tsao & Living-
stone, 2008; Dobs, Martinez, Kell, & Kanwisher, 2022; Vinken,
Prince, K., & Livingstone, 2023; Shi et al., 2023).

However, humans are not the only face recognition experts.
Convolutional neural networks (CNNs), inspired by the brain’s
structure and function, have recently surpassed human per-
formance on many tasks, including face recognition (Dyck &
Gruber, 2023), and have also been proposed as models of the
visual cortex, including the face system (Yamins et al., 2014;
Richards et al., 2019; Storrs, Kietzmann, Walther, Mehrer, &

Kriegeskorte, 2020). While some studies have shown that
training on face recognition is not necessary for achieving
a similar Brain-CNN face representation (Grossman et al.,
2019), others have shown that it is necessary in order to
capture the behavioral properties of human face perception
(Dobs, Yuan, Martinez, & Kanwisher, 2023). However, most of
these studies used unfamiliar face stimuli which neglected the
question of familiarity impact on how the brain processes and
represents faces. Additionally, most findings rely on fMRI or
behaviroal data (Tsantani et al., 2021), which limits the under-
standing of the temporal dynamics of face processing. Pre-
vious work suggests that magnetoencephalography’s (MEG)
high spatiotemporal resolution is crucial to investigate the links
between CNNs and brain dynamics (Kietzmann et al., 2019).

To complement this research, we use CNNs as tools to ex-
plore the neuromagnetic signatures of face recognition in the
brain, as well as domain generality versus specificity of face
representation.

Methods

MEG Data We used publicly available MEG data acquired
from 16 subjects performing arecognition task with familiar
(famous), unfamiliar, and scrambled face stimuli (Wakeman
& Henson, 2015). We followed the preprocessing steps from
Jas et al. (2018). This involved projecting the data to source
space to estimate the underlying neural activity for voxels. For
each subject, we segmented into 1s epochs per voxel. Voxels
were then assigned to 450 regions of interest (ROIs) based on
the Destrieux atlas (Destrieux, Fischl, Dale, & Halgren, 2010).

Network training and activations’ extraction We used the
backbone of FaceNet (Schroff, Kalenichenko, & Philbin, 2015)
for our analysis due to it’s success in modeling the face sys-
tem (Abdelhedi & Jerbi, 2022; Jiahui et al., 2023). We trained
the same architecture on three distinct tasks. A Face Recogni-
tion task (FR-task) trained on VGGFace dataset (Cao, Shen,
Xie, Parkhi, & Zisserman, 2017) and fine-tuned on a distri-
bution of celebA dataset (gray scale, cropped to include only
the face,similar to the stimuli used above) (Liu, Luo, Wang, &
Tang, 2015). An Object Recognition task (OR-task) trained
on ImageNet (Deng et al., 2009) with excluding human-face
stimuli. Finally, a Dual Task (Du-Task) by augmenting the Im-
ageNet with a human-face class selected from celebA. To ex-
tract the layer activations necessary for subsequent similarity
analyses, we fed the three types of face stimuli used in the
MEG experiment through the networks. The responses from
all layers were collected and stored for further analysis.

Representational Similarity Analysis (RSA) Inline with
previous research, we employed RSA (Kriegeskorte, Mur, &
Bandettini, 2008) to evaluate the similarity between the acti-
vation patterns of the artificial (FaceNet) and biological (MEG)
systems when presented with the same stimuli. We quantified
pairwise dissimilarities between the brain and the CNN acti-
vations for each stimulus using representational dissimilarity
matrices (RDMs). We computed three distinct RDMs: One



per each type of face stimuli (Familiar: Fam-RDM, Unfamiliar:
Unfam-RDM, and Scrambled: Scram-RDM) for both MEG and
FaceNet. Layer-wise RDMs were computed for the three train-
ing objectives (explained above) and for a randomly initialized
FaceNet. For the MEG data, we computed the three RDMs
for each time point for every ROI by considering the activity of
all voxels assigned to it. All correlations within the RDM cells
and across RDMs were calculated using Pearson correlation.
Noise Celing (NC) To quantify the potential influence of
noise on our data, we calculated an upper bound NC using
the method described in (Cichy, Khosla, Pantazis, Torralba,
& Oliva, 2016). We present the results as the proportion of
variance explained by dividing the similarity score by the NC.

Results

To compare neural representations of familiar versus unfamil-
iar faces, we plot the CNN-brain representational similarities
across time for FaceNet trained on Face Recognition, when
presented with three distinct types of stimuli. The results de-
picted in Figure 1A, demonstrate that the FR-task FaceNet
exhibits peak similarity for both familiar (0.59, p<0.05) and
unfamiliar (0.6, p<0.05) stimuli in comparison with the Occip-
ital ROI. Notably, the peak for unfamiliar stimuli occurs earlier
at 114ms, roughly 30ms before the peak elicited by familiar
stimuli (154ms). However, in Figure 1B and 1C, which show
comparisons of Fusiform and Inferior Temporal (IT), peak sim-
ilarities are only observed for familiar stimuli. These peaks oc-
cur at 170ms (0.5, p<0.05) for the fusiform area and 365ms
(0.48, p<0.05) for the IT, with a second smaller peak for the
fusiform at 490ms (0.4, p < 0.05). Examining the brain maps
in Figure 2, demonstrating similarity scores obtained from Fig-
ure 1 at the peak time points but for all brain ROIs, a clear
difference between unfamiliar and familiar stimuli becomes
evident. When using unfamiliar stimuli (Figure 2A), only the
Occipital ROI shows a strong correlation with FaceNet activa-
tions. In contrast, familiar stimuli (Figure 2B) elicit a peak of
similarity in the same region along with an additional cluster
of regions also showing high similarity with FaceNet including
The fusiform (Figure 2C) and IT (Figure 2D) regions.

Examining the impact of different training tasks, we observe
that using only face recognition as the training objective yields
the highest similarity peaks in the ROIs (Figure 1A, 1B, and
1C). In contrast, smaller similarity peaks are seen at 153ms for
the dual-task and object recognition training objective. How-
ever, these peaks are comparable to the results obtained
with an untrained architecture (Figure 1A). When analyzing
the distribution of scores obtained using the dual-task trained
FaceNet (Figure 1B), we can observe a cluster of similarities
in occipital areas, although less significant than the cluster ob-
tained with the face recognition-trained FaceNet. This cluster
becomes even less prominent in the object recognition-trained
FaceNet.
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Figure 1: Explained variance (similarity score normalized by
noise ceiling) across time for three ROIs and FaceNet (FR-
task). Results depicted for the layer that gave highest scores
but the pattern is sustained for other layers. Panels (A-C)
compare brain activity with FaceNet (FR-Task) across stimuli
types. Panels (D-F) quantify MEG-FaceNet similarity change
for different training tasks using Fam-RDM. Columns denote
brain region. Panels (A, D) are for Lateral Occipital, (B, E) for
Fusiform, (C, F) for Inferior Temporal (IT).
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Figure 2: Brain maps of the time points with peak similarity.
(A): 114ms, (unfamiliar stimuli). (B):153ms (familiar stimuli).
(C): 170ms (familiar stimuli). (D): 365ms (familiar stimuli).

Discussion
Our study investigated how brain-ANNs representation simi-
larity was affected by training conditions and stimulus types.
First, the reported peak similarities exceeded those obtained
for controls (scrambled faces and untrained network). Sec-
ond, comparing familiar versus unfamiliar stimuli revealed how
face perception temporally evolved in the brain. Our results
supported the hypothesis that both M170 and M400 compo-
nents are modulated by face familiarity. Regarding domain-
general versus domain-specific, our results favored the latter.
The domain-general hypothesis would predict that the OR-
task ANN would do as well in terms of similarity with the vi-
sual system during face recognition, while our results showed
the FR-task as necessary to capture the signatures of face
processing.

We plan to extend our analysis in several directions. First,
we will examine the frequency bands of the MEG to explore
the spectral signatures of familiar versus unfamiliar face per-
ception. Second, we will investigate if the results hold using
various CNNs. Finally, we believe this work contributes to a
much-needed effort in the field: building in silico models of the
brain to understand its function and test related hypotheses.
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