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Abstract
Planning requires an internal model of the world that can
be flexibly utilized to link actions and subsequent con-
sequences across time and space. The hippocampus,
often referred to as a “cognitive map,” is known for en-
coding the location of an animal within complex environ-
ments by representing salient states, both spatial and
non-spatial. These representations can extend to non-
local states, making them well-suited to support this in-
ternal action-outcome model. While the hippocampus
has been causally linked to planning in both humans
and rodents, how hippocampal representations carry out
this function is poorly understood. To address this, we
record from dorsal hippocampus while rats perform a
multi-step reward-guided task that employs probabilistic
transitions between actions and outcomes, the rat two-
step task, which has been shown to reliably elicit plan-
ning. We find that hippocampal activity encodes the task
space and exhibits “splitter cells” that differentiate sim-
ilar positions based on preceding choice, providing dis-
tinct representations for each combination of choice and
outcome. In-between trials, we find oscillating represen-
tations that encode the visited outcome paired with both
possible choices; however, overall choice encoding is bi-
ased towards upcoming choices with a model-based de-
pendence on reward and probabilistic transition.
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Hippocampal activity tiles task space
Rat two-step task and electrophysiological recordings.
Rats performed a multi-step probabilistic decision task for liq-
uid reward (Figure 1), known as the two-step task. Rats up-
date choices during a first step (ii) in light of outcomes (v)
and rewards (vi) observed at a second step. One outcome
will have a higher chance of reward than the other, and the
better outcome will reverse unpredictably throughout the ses-
sion (vii). Choices are linked probabilistically to outcomes (iii),
where each has a high probability of leading to one of the out-
comes (common) and a low probability of leading to the op-
posite outcome (rare). Previous work demonstrated that rats
solve this task using primarily a model-based (MB) strategy,
where animals’ choices were influenced by the interaction be-

tween reward and transition (Miller, Botvinick, & Brody, 2017).
After rats were fully trained, each were implanted bilaterally
with neuropixels 2.0 probes targeting layer CA1 of dorsal hip-
pocampus, where we recorded from 15,361 task-active units
from 131 sessions across 4 rats.

Figure 1: Rat two-step task description.

Hippocampal activity maps distinguish choice history
and trial type. In order for the hippocampus to support an
internal-action outcome model, it needs to represent states of
the task. We measure average firing rates separately across
each of four trial types defined by each combination of choice
port (left, L1, and right, R1) with outcome port (left, L2, and
right, R2). Each trial is represented as a linear trajectory
between all ports visited during the trial. A summary of all
task-selective units can be seen in Figure 2A, where units
are rank sorted by preferred port (C1,L1,R1,C2,L2,R2) and
trial type (L1-L2,L1-R2,R1-L2,R1-R2), and colored according
to preferred port. We find selectivity across all positions,
where many units differentiate the same position dependent
on choice history. For example, Figure 2Bi shows a unit fir-



ing at second-step initiation (C2) only after left choice. Fig-
ure 2Bii shows an example unit firing during reward after a
right-outcome port (R2) only following a right choice, i.e. only
during a common transition. Figure 2Biii shows an example
unit firing during reward following a left-outcome (L2), but only
after a right choice was made, i.e. only during a rare tran-
sition. All of these units are examples of what is known as
splitter cells, a common phenomena in hippocampal encod-
ing, where units only fire in a particular position in its preferred
context (Duvelle, Grieves, & van der Meer, 2023). The exis-
tance of second-step splitter cells suggests that trial types are
differentiated by separable activity maps.

Figure 2: Hippocampal activity encodes task states and
choice history.

Choice encoding between trials is biased
towards upcoming, model-based choices

Choice encoding during the ITI shows a model-based de-
pendence on reward and transition. To understand how
the hippocampus support planning, we measure neural en-
coding during the inter-trial interval (ITI): if the animal links
actions and outcomes to plan before selecting the next action,
this must occur after an outcome is observed and before the
next action takes place. Supporting this notion, the ITI dur-
ing the two-step task has been identified as a critical period
for learning in the OFC to occur (Miller, Botvinick, & Brody,

2022). We constrain analysis to two time windows in the ITI:
1 second following outcome port entry, which we refer to as
post-trial; and 1 second preceding initiation port entry of the
next trial, which we refer to as pre-initiation. This ensures
that the rat remains near the outcome port post-trial or is mov-
ing towards the initiation port pre-initiation, minimizing the risk
of measuring while the rat is disengaged from the task.

Having choice dependent encoding throughout the trial al-
lows us to use a Bayesian reconstruction approach (Zhang,
Ginzburg, McNaughton, & Sejnowski, 1998) to determine
which choice is most likely being encoded during the ITI. We
look specifically at the relative likelihood of choice, where pos-
itive values correspond to encoding of the action chosen prior
to the ITI, and negative values correspond to encoding of the
non-chosen action. We find that choice encoding within both
ITI windows is biased by both reward and transition; specifi-
cally, rats are more likely to encode the chosen action follow-
ing a common-transition reward and a rare-transition omis-
sion, and are more likely to encode the non-chosen action
following a common-transition omission and a rare-transition
reward (Figure 3A). This pattern of choice encoding is consis-
tent with a MB dependence on reward and transition, where
common-transition reward and rare-transition omissions lead
to repeating actions, and common-transition omission and
rare-transition rewards lead to switching actions.

Figure 3: Relative choice encoding during the inter-trial inter-
val.
Positions updated post-trial are retrieved pre-initiation.
Planning requires that the value learned at some outcome is
propagated to relevant choices before another action is se-
lected. We use a similar reconstruction approach to not only
decode relative choice, but also the position being encoded



in both ITI windows (Figure 3B). We find that post-trial encod-
ing is biased towards second-step positions and reward (after
C2), and pre-trial encoding is biased towards first-step posi-
tions (before C2). However, there exists a window of overlap
in encoded positions between C2 and S2. Importantly, the
same MB choice information is being encoded at these over-
lapping positions, suggesting that choice information encoded
post-trial is being retrieved pre-initiation to be associated with
upcoming choice states.
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