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Abstract
The spontaneous processing of visual information plays
a significant role in shaping memory, sometimes even
overshadowing voluntary efforts to encode specific de-
tails. What are the neurocomputational mechanisms that
underlie the transformation of percepts to memories in
the brain? To address this, we analyzed single neuron
recordings in hippocampus and amygdala, two important
structures in the medial temporal lobe (MTL), collected
while human participants viewed sequences of object im-
ages. We hypothesize that the activity of single neurons
in these MTL structures track the depth-of-processing of
incoming visual information, thereby supporting the per-
ception to memory interface, with more deeply processed
images leading to stronger memory traces. Inspired by
recent work, we derived a computational signature for
the depth-of-processing of visual representations based
on the iterative reconstruction loop in a sparse coding
model. Consistent with our hypothesis, we found that the
firing rates in both hippocampus and amygdala correlate
with the number of iterations required for reconstruction
— and do so in complementary ways. Moreover, single
neurons that are more strongly associated with the num-
ber of model iterations also fire more. Our results pro-
vide an algorithmic account for how MTL might support
the adaptive interface between perception and memory.
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Introduction
Although memory can result from intentional selection, much
of what we remember simply follows from the spontaneous
processing of incoming visual inputs (Bainbridge, 2020;
Broers, Potter, & Nieuwenstein, 2018; Isola, Xiao, Parikh, Tor-
ralba, & Oliva, 2013; Goetschalckx, Moors, & Wagemans,
2018). Extensive neuroscience research has pointed to the
Medial Temporal Lobe (MTL) as the locus interfacing percep-
tion and memory. The hippocampus, for instance, not only
sits at the top of the visual hierarchy according to an influen-
tial characterization of the visual system (Felleman & Van Es-
sen, 1991), but has also been implicated in the formation of
episodic memories from visual inputs (Scoville & Milner, 1957;
Cao et al., 2024). Critically, not all visual inputs are equally
memorable and MTL modulation reflects this non-uniformity
(Bainbridge, Dilks, & Oliva, 2017). Yet, the neurocomputa-
tional principles of how these brain structures might implement
such an adaptive interface, modulating the strength of memo-
ries as individual images are encountered, remain unknown.

Here, we hypothesize that the MTL supports the
perception-to-memory interface by modulating, in an online
fashion, the ‘depth-of-processing’ of incoming inputs (Craik
& Lockhart, 1972). This influential depth-of-processing the-
ory states that the strength of memory traces are dictated by
the depth of perceptual processing that incoming visual in-
puts elicit. In a recent quantitative realization of this theory,
Lin, Li, Lafferty, and Yildirim (in press) provided a computa-
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Figure 1: (a) Hippocampus and amygdala indicated on a
sketch of the human brain. (b) Four example images from the
data collected by Cao et al. (2024) arranged in the decreas-
ing order of the average hippocampus firing rate evoked. (c)
A schematic of the sparse coding model performing iterative
refinement to more accurately reconstruct visual representa-
tions of a layer in a pre-trained DNN.

tional signature for modulating the level of perceptual process-
ing on an image basis: compression-based reconstruction er-
ror of the visual representations of an image. They imple-
mented this idea by training a sparse coding model to com-
press and reconstruct activations of a pre-trained deep con-
volutional neural network (DNN). They found that images with
harder-to-reconstruct representations lead to stronger mem-
ory traces. Using this computational signature, we set out to
test the depth-of-processing theory in the firing rates of single
hippocampus and amygdala neurons in humans, two impor-
tant structures in the MTL.

To do so, we analyze the firing rate of individual cells
recorded in the hippocampus and amygdala from human pa-
tients viewing 500 sequentially presented images of objects.
We test whether the stimulus-driven variability in the spiking
rates of these neurons correlate with a computational sig-
nature of reconstruction difficulty — the number of iterations
needed in the sparse coding model to arrive at convergence-
level reconstruction error over the stimulus. Remarkably, we
find that the firing rates of both hippocampus and amygdala
neurons track the number of iterations until convergence, and
they do so in complementary ways relative to both the direc-
tion of this effect, and the DNN layer that the visual represen-
tations originate in. These results provide support for the hip-
pocampus and amygdala implementing the core interface of
perception and memory via the adaptive depth-of-processing
mechanism.

Methods
WUSTL dataset: single neurons in human hippocampus
and amygdala The WUSTL dataset (Cao et al., 2024) con-
tained activations of 808 single neurons in the human hip-
pocampus (n = 362) and amygdala (n = 446). This data was
collected from 15 human participants viewing a total of 500
natural object images, uniformly distributed across 50 cate-
gories from ImageNet (Deng et al., 2009). The stimuli were
presented for 1000 ms (with an inter-stimulus-interval of 500
to 750 ms) and neural activity was recorded from 250 to 1250
ms after stimulus onset. Following (Cao et al., 2024), we an-
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Figure 2: (a) Bootstrapped correlations between the iteration counts of the sparse coding model (each trained on a different
layer of the DNN, from layer 1 to 7) and the firing rates of neurons in the human hippocampus and amygdala. While the iteration
counts based on later layers (layers 5, 6) correlate positively with hippocampus, the iterations based on an earlier layer (layer 3)
correlate negatively with amygdala. (b) The average firing rates of the top and bottom 30% neurons with respect to the strength
of the relationship between the individual neurons’ firing rates across images and the best-match sparse coding layer. Error bars
indicate standard deviations; “*” for p < .05; “***” for p < .001

alyzed “background-subtracted” firing activity in each neuron
— 1.5 standard deviations above the mean neural response
in the −500 to 0 ms window preceding the stimulus onset.

A computational signature of depth-of-processing: Itera-
tions to reconstruct in sparse coding Our computational
model builds on the work of Lin et al. (in press) who proposed
that compression-based reconstruction error — implemented
using a sparse coding model (Olshausen & Field, 1996) —
modulates depth-of-processing (Craik & Lockhart, 1972) dur-
ing the spontaneous processing of visual inputs, thereby im-
pacting their associated memory strengths. The sparse cod-
ing model is trained to reconstruct the activations evoked by
a DNN (VGG-16 (Simonyan & Zisserman, 2014)) pre-trained
on ImageNet (Deng et al., 2009). Given an input vector of
DNN activations, sparse coding involves an iterative optimiza-
tion process to reconstruct the input as accurately as possible
from its ‘codewords’, a learned basis set of vectors spanning
the input space, until it approaches a stable solution. Con-
vergence is achieved when either a threshold reconstruction
error (of 0.01) is achieved or the maximum allowable iteration
is reached (1000 iterations). We therefore use the number
of iterations to reach convergence-level reconstruction as our
computational signature for depth-of-processing: Just as the
larger iterations in the sparse coding model indicate an in-
creased computational demand for accurately reconstructing
inputs, we suggest that in the brain, deeper processing im-
plies more firing at the neuron level (and likely more cognitive
resources overall) incurred during visual processing.

Model vs. data comparisons We followed Lin et al. (in
press) to train a separate sparse coding model for each of the
5 maxpool and 2 dense layers of a pretrained VGG-16. 1000
randomly sampled units from these layers served as the input
to the corresponding model instance. All model instances had
an intermediate z-layer (Fig. 1c) of size 500 and an output re-
construction layer of 1000 units. For each of the 500 images in

the WUSTL dataset, we ran it through the 7 model instances
and record its respective iteration numbers. During analysis,
for each model instance, we correlated the 500-dimensional
model prediction vector with the 500-dimensional average fir-
ing rates of the hippocampus and amygdala neurons.

Results
We find that images that require more iterations to reconstruct
lead to more intense firing in human hippocampus neurons
(Fig. 2a). The sparse coding model based on layers 5 and
6 correlate significantly positively with the average hippocam-
pus firing rates (r = .08 and r = .06, both p < .05). Moreover,
the sparse coding model based on layer 3 correlates signif-
icantly negatively with the amygdala firing rates (r = −.06,
p < .05). This suggests a complementary impact of depth-of-
processing across hippocampus and amygdala, both in inputs
and the direction of the relationship.

We also find that the activity of individual neurons are mod-
ulated iterations-to-reconstruct (Fig. 2b). Based on the anal-
ysis above, we selected the model instances that best cor-
related with hippocampus (with layer 5) and amygdala (with
layer 3). Then for each brain region, we identified two distinct
clusters of neurons — the top 30% and bottom 30% of the
neurons in their correlations with the corresponding model in-
stance. In hippocampus, we find that the top neurons elicit
significantly higher firing rate than the bottom neurons. And,
we observe the opposite trend with the amygdala neurons.
These results establish that the strength of the relationship to
model iterations predicts firing rates in single neurons (higher
for hippocampus and lower for amygdala).

Discussion
Taken together, these results suggest an algorithm-level
mechanism for how the MTL neurons might support the per-
ception to memory interface, based on the implementation of
the Craik & Lockart’s depth-of-processing theory via the itera-
tive reconstruction process in sparse coding.
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