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Abstract
Modern computational models of decision-making ac-
knowledge that choice behavior reflects a stochastic pro-
cess. Most models of value-based choice assume that
value computation is passed through a stochastic func-
tion that converts a linear value comparison into choice
probability. Stochasticity is typically treated as a noisy
random variable and the focus in many of these stud-
ies involves evaluating the individual differences in value
preferences or value learning. However, less attention
has been devoted to understanding the individual differ-
ences in choice stochasticity and whether the degree of
individual cognitive imprecision is a trait-level charac-
teristic that transfers across different value-based tasks.
Here, we evaluate the intra-individual stability of choice
stochasticity across two distinct value tasks: a risky lot-
tery task and a delay discounting task, and interrogate
the role of cognitive imprecision in accounting for this
relationship. We find that regardless of mathematical
form, stochasticity correlates across tasks, but the re-
lationship between stochasticity, risk attitudes, and tem-
poral discounting largely depends on the assumption of
the choice function. In contrast, the cognitive impreci-
sion models offer precise predictions on the relationship
between stochasticity, risk, and discounting across indi-
viduals. Thus, cognitive imprecision may serve as a gen-
eral mechanism that could plausibly account for individ-
ual risk attitudes as well as discounting behaviors.
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Introduction
Stochasticity is a central feature of decision-making. Humans
and animals alike behave inconsistently when presented with
the same choice option across trials. Models of learning and
decision-making attempt to capture choice stochasticity by in-
corporating a random variable. Despite widespread model-
ing of stochasticity across many cognitive disciplines, most of
the attention is given to parameters representing how agents
learn value and manifest preferences (e.g., learning rate, dis-
count factor), reducing stochasticity as a nuisance variable.

Previous studies have assessed how these parameters are
influenced by individual differences among agents and exper-
imental manipulations [2]. Yet, similar analyses are scarce in
the realm of stochasticity [4].

One barrier to analyzing stochasticity is the fact that its na-
ture and source is disputed. Evidence accumulation models
posit that noise in decision-making is a stochastic process
[8], that could plausibly arise from the intrinsic variability of
the choice circuit [3]. Other neurobiologically-plausible com-
putational models suggest that choice variability arises from
noise in upstream neuronal representations of value that then
feed into winner-take-all choice implementation areas [9][10].
More recently, choice randomness in risky choice has been
proposed to arise from noise in the neural representation of
magnitudes [1], a process known as cognitive imprecision [6].
An advantage to this theory of stochasticity is that it provides
a unitary account of both noisy behavior and risk attitudes.

Thus, it is reasonable to conceive of a common neurocog-
nitive mechanism of imprecision in primary attribute represen-
tations that could account for choice randomness in many dif-
ferent types of decisions. Here, we test this hypothesis by an-
alyzing choice stochasticity across two value-based decision-
making tasks: one assesing delay discounting, and the other
assessing risky lottery preferences. We explore the correla-
tion of randomness across tasks under different models in-
cluding cognitive imprecision.

Methods
Data were derived from a previous published study [7]. Forty-
two medically-healthy, consenting adults completed a risk at-
titude (RA) and an intertemporal choice (ITC) task. In RA,
participants chose between a certain $5 gain, and a lottery.
Lottery amounts and probability varied on a trial-by-trial ba-
sis. The ITC task involved a choice between an immediate,
smaller monetary amount, and a larger, delayed amount. Sim-
ilarly, amount and time delay varied on a trial-by-trial basis.

We analyzed behavior from both tasks using two classes
of models, namely: (a) the linear value difference (VD) model
and (b) the log-linear cognitive imprecision (CI) model. First,
VD uses the standard softmax to fit behavior:

Pr(A) = 1/(1+ e−γ(UA −UB)) (1)



where UJ is the computed values of option J ={A,B} and γ

measures choice precision (inverse of variability). In contrast,
CI assumes the following choice function [5]:

Pr(A) =
U1/µ

A

U1/µ
A +U1/µ

B

(2)

where µ measures stochasticity. Rearranging the right-hand
side of the equation results in the following log-softmax:

Pr(A) = 1/(1+ e−
1
µ log UA

UB ) (3)

The softmax in VD assumes perfect comparison of value op-
tions (utilities) that is eventually injected with noise drawn from
a Gumbel distribution. In contrast, CI assumes that noise is
scaled with the magnitude of the values. Larger values are
noisier than smaller values. CI’s softmax assumes that value
options are compared logarithmically and that noise is drawn
from a log-Gumbel distribution.

Choice behavior in RA was fitted to a power utility model
(UJ = pvα) while behavior in ITC was fitted using a nonlinear
hyperbolic discounting model [7] (UJ = vα /(1+κd)). Here,
v is the dollar amount, p is the probability of winning, d is
the delay to the delivery of v (0 for the immediate option),
α measures risk attitudes (α > 1, risk-seeking; α < 1, risk
aversion), and κ is the discount rate. We fitted these mod-
els using maximum likelihood estimation in Python and hier-
archical Bayesian modelling in R. Correlational analyses were
performed in Python as well as in R.

Results
We found that stochasticity was correlated across RA and
ITC tasks using both VD (Model 1) (r(40) = 0.65, p < 0.001)
and CI (Model 2) (r(40) = 0.31, p < 0.05) models (Fig. 1).
Risk attitudes were correlated with stochasticity using Model
1 (r(40) =−0.88, p < 0.001), but not Model 2 (r(40) = 0.22,
p = 0.15). Conversely, the discount rate was associated with
stochasticity using Model 2 (r(40) = 0.44, p < 0.005), not
Model 1 (r(40) =−0.005, p = 0.97).

Figure 1: left : Stochasticity across economic choice tasks
using the VD model. right : Stochasticity across economic

choice tasks using the CI model.

Here, we test CI’s predictions on the relationship between
stochasticity and risk/discounting attitudes. First, CI pre-
dicts that choice precision is positively correlated with risk-
neutrality. Here, we replicate this prediction across the three

levels of probability present in the task (r(40) = 0.91, p <
0.001 for 25%; r(40) = 0.74, p < 0.001 for 50%; and r(40) =
0.54, p < 0.001 for 75%). Notably, individuals vary in their
risk-seeking behavior: risk-seeking is higher when probabil-
ity is low relative to high probability. This is consistent with
previous findings of more risk-seeking when gains are lower.
To establish a common measure of risk attitudes across the
probability levels, we take the deviance between risk attitudes
from risk-neutral probability. CI predicts a negative relation-
ship between precision and the deviation from risk-neutrality:
the smaller the deviation, the closer the individual is to risk-
neutrality, and the larger their choice precision. Our results
confirm this prediction (r(40) = −0.81, p < 0.001) (Fig. 2,
left).
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Figure 2: left : Correlation between RA choice precision and
deviation from risk neutrality. right, top: Correlation between
ITC precision and discount factor. right, bottom: Correlation
between ITC precision and comparison distortion between de-
layed and immediate amount.

Second, we confirm the following predictions in ITC: a neg-
ative correlation between choice precision (µ) and the dis-
count rate (κ) (r(38) = −0.68, p < 0.001) (Fig. 2, right
top) and a correlation between delayed-versus-immediate
amounts comparison (α) and precision (r(38) = 0.68, p <
0.001) (Fig. 2, right bottom). Crucially, both κ and α are
related. This is consistent with previous findings that show the
latent effects of risk attitudes on discounting [7].

Conclusions
Overall, we find evidence that choice stochasticity is con-
served across different economic choice tasks. We find that
risk attitudes and discount rates are related to their respec-
tive stochasticity. Following the CI predictions, η captures the
deviations from risk-neutrality. This explains the negative cor-
relation between stochasticity and risk. Finally, we find that
the discount factor and the choice distortion between delay
and immediate awards are related latent parameters that ac-
count for the relationship between discounting, choice distor-
tion, and stochasticity.
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