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Abstract
Most recent research on human planning attempts to ad-
judicate between different possible models based on their
ability to predict choices and perhaps response times.
Here, we propose that eye-tracking can provide a cru-
cial additional constraint. Using a simple task that makes
gaze highly revealing of internal planning, our results (1)
provide a more nuanced perspective on previously pro-
posed reward- and depth-based pruning mechanisms, (2)
suggest that people use a planning strategy that incorpo-
rates elements of both best-first search and Monte Carlo
tree search, and (3) suggest that planning (in our task)
does not involve accumulating evidence about reward.
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We developed a new paradigm that uses eye tracking to
directly measure the computations underlying planning. The
experimental interface is illustrated in Figure 1A. There are
eleven locations (states), each labeled with the number of
points one would gain or lose by moving there (rewards). The
current state is highlighted in blue and possible actions are in-
dicated by arrows. Participants select actions by clicking on
the state they wish to move to, attempting to maximize cumu-
lative reward before reaching a state with no outgoing arrows.
Both the rewards and transition structure change on every
trial. We use a random circular layout to prevent participants
from using spatial heuristics that would not generalize to more
naturalistic planning tasks (c.f., Correa, Ho, Callaway, Daw, &
Griffiths, 2023; Zhu, Lakshminarasimhan, Arfaei, & Angelaki,
2022). Finally, we impose a time limit of 15 seconds to plan
and execute a sequence of moves (in one phase).

We recorded participants’ gaze continuously using an Eye-
Link 1000 with a chin rest. To eliminate any uncertainty
about which reward a person is (visually) attending to at each
moment, we adopt a gaze-contingent display, such that the
reward at a given state is only shown when their gaze is
recorded in a region near that state.

Results
We recruited 31 participants from the student pool at NYU. We
excluded 3 participant due to poor tracker calibration. We ad-
ditionally excluded 15 trials on which the participant indicated
that the gaze contingency was not working and 200 trials on
which the time limit was reached. This left 28 participants and
2585 trials in our final analysis.

Depth- and reward-based pruning Two of the most well-
known mechanisms of human planning concern when people
decide to “prune” a branch of their decision tree. Figure 2A
shows that participants were decreasingly likely to continue
searching down a path the deeper they were in the tree (B =
-1.076, [-1.388, -0.763], p < .001; we only consider cases
where a child state is available). However, in contrast to
most models of depth-limited search (Keramati, Smittenaar,
Dolan, & Dayan, 2016; Krusche, Schulz, Guez, & Speeken-
brink, 2018; Snider, Lee, Poizner, & Gepshtein, 2015), we see
a smoothly decreasing probability rather than a strict cutoff.

Other work has proposed that people prune paths when
they discover a large penalty (Huys et al., 2012). Consis-
tent with this, we found that people were more likely to con-
tinue searching down a path when the last-fixated state had a
higher reward (Figure 2C; B = 0.019, [0.010, 0.028], p < .001).
However, the effect was relatively weak, and was roughly lin-
ear. This contrasts with the standard pruning model in which
large penalties are selectively avoided.

Comparing best-first and Monte Carlo tree search We
next sought evidence for more sophisticated search strate-
gies. We focused on the two most widely used search al-
gorithms in AI, both of which have been proposed as models
of human planning: best-first search (BFS; van Opheusden et
al., 2023; Zhang, Lipovetzky, & Kemp, 2023) and Monte Carlo
tree search (MCTS; Éltető & Dayan, 2023).

A key difference between BFS and MCTS is that MCTS
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Figure 1: Measuring planning with eye tracking. (A) The task
interface as shown to participants. (B) The sequence of fixa-
tions before the first action for one trial, starting at the star.
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Figure 2: Results. (A) The probability that a “child” (see panel C) of the previously fixated state is fixated as a function of the depth
of the previously fixated state. (B) Like A but for the reward of the previously fixated state. (C) The three types of saccades that
occur above chance level. The eye indicates the previously fixated state. States are labeled with the total proportion of fixations
of the given type (38% is the total probability across both child states). (D) The proportion of non-child saccades, or “jumps”,
to states of each depth. Chance is shown by dashed lines. (E) Conditioning on one of the two children of the last fixated state
being fixated next, the probability of fixating an arbitrarily chosen one as a function of the difference in total attainable reward
from visiting the two states (Q(·,s1)−Q(·,s2)). Unseen rewards are set to zero when computing action value. (F) Conditioning
on a frontier state being fixated next, the probability of fixating an arbitrarily chosen one as a function of the cumulative reward up
to (but not including) the given state. (G) Like E but as a function of the relative number of previous fixations to each state, split
by whether each state had been fixated at least once. (H) The probability of visiting a state next (a binary choice) as a function
of the number of fixations to that state and its reward. Legend excludes rewards of ±1 and ±2.

is constrained to simulate states in temporal order (rollouts),
whereas BFS can consider states in arbitrary order. As shown
in Figure 2C, people indeed most often fixated a child of the
previously fixated state, consistent with the rollouts of MCTS.
However, they also often fixated a sibling. This corresponds
to considering an alternative action from the previous (parent)
state, something BFS does frequently.

In cases where people don’t fixate a child, MCTS predicts
that they will “jump” back to the initial state. As shown in Fig-
ure 2D, this was uncommon in the data. However, this could
be because people do not need to fully fixate the initial state to
see where the arrows point. In this case, a new rollout would
appear to begin in a depth-1 state, and indeed such states ac-
counted for the greatest share of jump saccades (37%). How-
ever, 56% of jump saccades went to states at depth 2 and
greater, inconsistent with MCTS.

In contrast, BFS predicts that fixations will be directed to
states on the search frontier, those which have not been previ-
ously fixated but whose parent state has been fixated. Consis-
tent with this, most fixations were on the search frontier (52%)
and people were significantly more likely to fixate such states
(B = 1.098, [0.976, 1.219], p < .001). However, there were
also a substantial number of refixations to previously fixated

states (41%), inconsistent with BFS.

A more subtle difference between BFS and MCTS lies in
the influence of reward. In MCTS, search is directed towards
states that have been found to lead to high future rewards. In
contrast, BFS focuses search on states with high past reward.
People were sensitive to both types of value. Focusing on
cases where a child state was fixated (consistent with MCTS),
Figure 2E shows that people were more likely to fixate the
state that led to higher rewards deeper in the tree (B = 0.050,
[0.036, 0.064], p < .001). Focusing on the cases where a fron-
tier state was fixated (consistent with BFS), Figure 2F shows
that people were more likely to fixate states at the end of paths
with high cumulative reward (B = 0.026, [0.006, 0.047], p =
.013). However, this effect was fairly weak.

MCTS and BFS also make different predictions regarding
the tendency to seek out new information. MCTS predicts that
people will preferentially fixate states that have received fewer
fixations, whereas BFS predicts that people will specifically
seek out states that have never been fixated. Focusing on the
case where a child state was fixated, Figure 2G shows that
people were indeed more likely to fixate the state that had not
been seen yet (B = -0.489, [-0.627, -0.351], p < .001), but
they were not strongly sensitive to the number of additional



fixations (B = -0.024, [-0.114, 0.065], p = .593).

No evidence for evidence accumulation Finally, we con-
sider how fixations relate to participants’ ultimate choices. We
predicted that repeated fixations would accumulate evidence
for/against visiting states with positive/negative reward. Evi-
dence accumulation underlies standard models of fixations in
non-sequential choice (e.g., Krajbich, Armel, & Rangel, 2010)
as well as most planning algorithms that revisit states, includ-
ing MCTS and any approach based on “backups” (see also
Solway & Botvinick, 2015). Contrary to our prediction, Fig-
ure 2H shows that additional fixations to a state strictly in-
creased the probability that it was visited, regardless of re-
ward. Considering only cases where both possible next states
have been fixated at least once, the interaction between re-
ward and fixations was negative (B = -0.055, [-0.071, -0.040],
p < .001). In ongoing research, we are attempting to better
understand the functional role of refixations in our task.
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