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Abstract
Establishing robust readouts is essential in the study and in-
terpretation of both artificial intelligence models and the brain.
These linking functions extract relevant information that allows
us to understand model behavior, as well as brain activity pat-
terns. However, building appropriate readouts for any given
task has been challenging due to the lack of clear strategies
and methods to design such functions. In this paper, we pro-
pose an approach to derive a readout model of least complex-
ity using an idealized data representation (with all information
needed to solve a task). We investigate the ability of our model
to decode representations for a simple physics understand-
ing task; object contact detection. We demonstrate that our
approach provides a better qualitative signal about AI mod-
els, compared to the traditional linear readout. Our readout
promises to not only improve the benchmarking of AI models,
but also provides a path forward for building more powerful
neural decoders and gaining insight into how different brain
regions represent and reason about the physical world.

Keywords: AI, Neuroscience, Cognitive Benchmarking.

Introduction
Understanding the neural mechanisms that give rise to cog-
nition and behavior is a central goal of both neuroscience
and artificial intelligence research (Macpherson et al., 2021).
Achieving this goal requires developing quantitative methods,
and “linking functions”, to relate patterns of brain activity to
the external stimuli, behaviors, and internal representations
involved. Readout techniques have emerged as powerful tools
for achieving this, enabling us to decode, or map, features
of interest onto recorded neural (or computational model) re-
sponses. By providing an explicit test of hypothesized links be-
tween brain activity and computational processes, readout ap-
proaches have become indispensable for understanding how
the brain processes information (Koren, Bondanelli, & Panz-
eri, 2023). Similarly, readout models have also become cru-
cial benchmarks for evaluating computational models of brain
function against empirical datasets (Bear et al., 2021).

The use of readout models has progressed significantly,
from early pioneering work introducing classifier-based read-
outs to decode object information from IT neurons (Hung,
Kreiman, Poggio, & DiCarlo, 2005), to using learned weighted
sums of IT activity to precisely predict human object recog-
nition behavior patterns (Majaj, Hong, Solomon, & DiCarlo,
2015). As deep neural network models became promi-
nent, readouts took on a new role, applying large-scale pri-
mate behavioral readouts to reveal the limitations of feed-
forward networks in capturing image-level discrimination pat-
terns (Rajalingham et al., 2018). Building on this foundation,
the scope of readout models has expanded further, enabling
the decoding of both seen and imagined objects from brain
activity (Horikawa & Kamitani, 2017) and enabling the recon-
struction of visual illusions from brain activity (Cheng et al.,
2023). Moreover, readout models have also been adapted
to study the semantic reconstruction of language from brain
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Figure 1: We propose a generalizable strategy that lever-
ages idealized representations and performs a search to find
a generic minimum complexity model capable of handling dif-
ferent neural representations.

recordings (Tang, LeBel, Jain, & Huth, 2023), as well as
improving EEG signal decoding (de Oliveira & Rodrigues,
2023). Most recently, scientists worked to expand readout
approaches beyond the linear vs. nonlinear divide that tra-
ditionally constrained mapping models (Ivanova et al., 2022),
putting emphasis on measure of model complexity over linear-
ity when selecting and evaluating mapping models. Despite
the proposed conceptual advances (Ivanova et al., 2022), the
lack of a concrete strategy for selecting the appropriate read-
out given a task, remains an ongoing challenge in the field.

In this paper, we propose a procedure to identify a suitable
readout for a given task using idealized data representation
(Figure 1). Our approach represents a generalizable strat-
egy that provides readout models capable of handling differ-
ent neural representations, variable input sizes, and complex
tasks beyond categorization, crucial for understanding higher-
order cognitive processes beyond simple object recognition.
We demonstrate the efficacy of this systematic approach on a
physics understanding task; object contact detection.

Methods
This study proposes a novel strategy for designing task-
appropriate readout models that leverage idealized represen-
tations. Our method aims to achieve the following objectives:

1. Identify the smallest parameter readout model capable of
effectively solving the idealized representation problem.

2. Ensure that our readout extends to any neural representa-
tion and accommodates variable input sizes.

Dataset & Task We investigate the efficacy of our approach
using the Physion v1.5 Benchmark (Bear et al., 2021). This
benchmark comprises realistic simulations of diverse physical
scenarios, challenging models to reason about stability, rolling
motion, containment, object linkage, and other physical con-
cepts. Instead of relying on 2D video inputs, we use an aug-
mented point cloud structure as our ground truth data (Figure
2a). This provides a richer physics representation, encoding
spatial coordinates (x, y, z), time (t), and color (r, g, b) infor-
mation for each object in the scene. Our logic stems from the
belief that this is a sufficient representation to solve this task
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Figure 2: (a) We use an augmented object-centric point cloud
structure as our idealized representation. (b) We use a read-
out protocol that combines Physion Point-Cloud data with a
transformer encoder that learns to predict contact labels.

and that the smallest model that solves it should be consid-
ered a valid readout. We train our readouts on an object
contact detection task, where the model must detect contact
events within a 150ms video stimulus. Objects of interest are
highlighted with red and yellow to guide the model’s attention.

Readout Model Architecture Our approach relies on a
readout architecture that combines a transformer encoder
(Vaswani et al., 2023) with a linear classifier that predicts con-
tact labels. The ability of the transformer for handling variable
input sizes, makes it suitable for tasks with a temporal na-
ture, while keeping a relatively small number of parameters
(compared to a linear model). For our point-cloud data, we
combine our transformer readout with a two-layer multi-layer
perceptron (MLP) that serves as a feature extractor, similar
to the PointNet approach (Qi, Su, Mo, & Guibas, 2017). The
MLP pre-processes our input to generate a higher-level rep-
resentation which is then fed into the transformer (Figure 2b).
We remove the MLP component when probing other models.

Readout Search Strategy We adopt an iterative approach to
model complexity, starting with a single-layer transformer en-
coder with one head attention. We progressively increase the
number of layers/heads until satisfactory performance on the
held-out Physion Test set is reached (Figure 1). Models are
tested by splitting videos into 150ms snippets and deducing
a global contact label from local predictions. Once we reach
the desired model, we adapt our readout and data to be ap-
plicable to other representations, enforcing a same parameter
readout for all representations.

Human-model evaluation We collect human responses (25
per test stimuli) on the same contact detection task (full video
stimuli). By analyzing the inter-rater reliability between model
predictions and human behavior, we can establish a baseline
for human performance and assess how closely models align
with human judgments using Cohen κ’s coefficient (Figure 3).

Results
Optimal Readout Model Our readout search strategy ex-
plores various parameter sizes and identifies an optimal con-
figuration with 4 attention heads, 1 encoder layer and a 128-
dimensional embedding. This results in a model with 200k

parameters, significantly less than the 2.3M parameters re-
quired by a linear readout for the same task.

Performance Comparison We compare the performance
of our transformer readout against a linear readout trained on
the same idealized (point-cloud) representation. The linear
model fails to achieve satisfactory performance, reaching only
82% accuracy. In contrast, our model achieves human-level
performance (94.22%) with an accuracy of 94.83% (Figure
3a). Furthermore, our model aligns better with human behav-
ior showing a Cohen κ score of 0.81 (vs. 0.63 for linear).

(a) Object Contact Detection Test Accuracy (b) Human-Model Inter-Rater Reliability

Figure 3: Our readout procedure finds a transformer readout
that (a) outperforms the linear readout and achieves human
performance on contact detection and (b) aligns better with
human behavior.

Additionally, we show the versatility of our approach by adapt-
ing our readout to 4 different representations: particle-based
representation with SGNN (Han et al., 2022) trained on Phys-
ion Particles(Bear et al., 2021), a 3D spatio-temporal repre-
sentation model, PixelNERF (Yu, Ye, Tancik, & Kanazawa,
2021) trained on shapenet (Chang et al., 2015) and aug-
mented with a LSTM layer (finetuned on the Physion v1.5
train dataset), a forward prediction video model, FitVid
(Babaeizadeh et al., 2021) trained on Ego4d(Grauman et al.,
2021) and a static image representation model, ResNet50
(He, Zhang, Ren, & Sun, 2015) trained on ImageNet
(Russakovsky et al., 2014). We constrain the dimension of our
features to be the same using PCA, in order to use the same
readout for evaluation (non-PCA results are also reported on
Figure 3a and 3b). Our results showcase the effectiveness
of each model in physics understanding and demonstrate the
superiority of our new readout as a benchmark for any model.

Conclusion
By developing a generic readout model selection procedure,
we aim to provide a principled approach for mapping neural
representations to computational outputs, irrespective of sys-
tem and task complexity. Our approach demonstrates that dis-
covering a readout mechanism based on idealized represen-
tations can better map network representations onto human
performance as compared to linear readouts. While currently
only demonstrated on Physion,this method holds promise for
advancing neural decoding in physics and other higher-order
cognitive processes, enabling a deeper understanding of how
brains and AI models represent and reason about the world.
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