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Abstract

As part of human core knowledge, object is the building
block of mental representation that supports high-level
concepts and symbolic reasoning. Infants develop the
notion of objects situated in 3D environments without su-
pervision. Towards understanding the minimal set of as-
sumptions needed to learn object perception, we inves-
tigate a predictive learning approach to learn three key
abilities without supervision: a) segmenting objects from
images, b) inferring objects’ locations in 3D and c) per-
ceiving depth. Critically, we restrict the input signals to
those available to infants, namely, only streams of visual
input and information of self-motion, mimicking the ef-
ference copy in the brain. In our framework, objects are
latent causes of scenes constructed by the brain that fa-
cilitate efficient prediction of the future sensory input. All
the three abilities are by-products of learning to predict.
The model includes three networks that learn jointly to
predict the next-moment visual input based on two previ-
ous scenes. This work demonstrates a new approach to
learning symbolic representation grounded in sensation.
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Object perception inspired by infant learning

Modern computer vision enjoys many advantages in its learn-
ing materials unavailable to infants: labels of objects in mil-
lions of images (Deng et al., 2009), pixel-level annotation of
object boundaries for object segmentation task and depth in-
formation from Lidar to learn 3D perception. Although deep
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networks powered by such labeled data excel in many vi-
sion tasks, the reliance on supervision limits their ability to
generalize to objects of unlabeled categories. In contrast,
the brain is able to acquire general perceptual abilities such
as object segmentation and 3D perception in the first few
months of life without supervision or knowledge of object cat-
egories (Spelke, 1990), allowing it to adapt to new environ-
ment with unknown objects. Motivated by this contrast, there
has been a surge of object-centric representational learning
(OCRL) models with unsupervised or self-supervised learn-
ing in recent years. Nonetheless, most of them only achieve
object segmentation in 2D images, lacking 3D representation.
Some require additional information not directly available to
the brain (such as depth, optical flow and object bounding
boxes (Elsayed et al., 2022)).

Decades of developmental research suggests that infants
likely honor a few principles reflecting basic constraints of
physical objects to perceive objects long before language ac-
quisition (Spelke, 1990). Among these principles, we examine
whether rigidity, an assumption that objects move rigidly, to-
gether with the principle of predictive learning, are sufficient to
allow neural networks to learn object perception with only ac-
cess to signals similar to those available to infant brains: only
streams of visual input and efference copy (a copy of self-
motion information from motor cortex).

We reason that with the mental construct of objects as dis-
crete entities, the brain can utilize the properties of rigid bod-
ies to efficiently predict the cohesive motion of all visible points
on an object (both in 3D space and 2D retinal image) by keep-
ing track of only a few motion parameters of the whole object
after perceiving its shape. Depth perception, 3D localization
and object segmentation are all skills needed for such predic-
tion. We hypothesize that they may arise jointly as byproducts
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Figure 1: Architecture for the Object Perception by Predictive LEarning (OPPLE) network: The model includes three networks
for depth perception, object extraction and imagination to predict the image at ¢ + 1 using those att — 1 and ¢ . All three are
convolutional networks with U-Net structure(Ronneberger et al., 2015). (a) From the image at time #, the object extraction network
f outputs the location, pose, an identity code (from the encoder) and a probabilistic segmentation map (from the decoder) for
each object. This is achieved by a recurrent neural network inserted between the encoder and decoder of f. Depth perception
network £ infers a depth map. (b) A matching score between any objects of two frames based on the distances between their
identity codes is used to weight the velocities estimated for each object at ¢ using its inferred location and that of any candidate
object at  — 1 to obtain an estimated velocity for that object. Self motion and estimated object motion are used together with
object segmentation and depth maps to predict the image at ¢ + 1 by shifting each pixel at z. (¢) The segmented object images
and depth at ¢, together with all motion information, are used by the imagination network to ‘imagine’ the regions not predictable
by warping. (d) The predictions based on warping and by imagination are merged according to the extent that each pixel is
predictable by warping. The error between the actual image and the prediction provides major teaching signals for all networks.
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Figure 2: Performance of depth inference (A) and 3D object localization (B,C). D: Nearer and larger objects are segmented
better.

of learning to improve the accuracy of predicting the future Performance on 3D object perception
visual inputs. In addition, due to occlusion and self motion, . .

some parts of a new scene are invisible before. Those parts Our model contains two convolutional neural networks tasked
may be predicted based on the statistical regularity of scenes 10 explicitly infer from an image all objects’ 3D locations,
learned from experience. Based on this reasoning, we imple-  P0Ses, probabilistic segmentation map, a latent code repre-
mented a model which integrates two approaches of predic- senting each object, and the distance of each pixel from the
tion: warping current visual input based on predicted optical ~ ¢amera (depth). . Their outputs for two consecutive Images
flow and ‘imagining’ regions unpredictable by warping based ~ are used to predict the next image by combining the above-
on statistical regularity in environments. We name the model ~ Mentioned two approaches of prediction: warping the current

as Object Perception by Predictive LEarning (OPPLE). image based on the predicted optical flow with the assump-
tion of rigid objects, and implicit ‘imagination’ of the newly



MODEL ARI-FG loU
MONET 0.36 0.20
SLOT-ATTENTION-128 0.34 0.38
SLATE 0.30 0.20
AMD 0.19 0.02
o3V 0.3740.01(3) 0.22+0.10(3)

OPPLE (OUR MODEL)  0.58+0.07(6) 0.45+0.02(6)

Table 1: Performance of models on object segmentation. (A)
The inferred depth exhibits high correlation with ground truth
(r=10.92). (B,C) Inference of object 3D locations (correlations
of r = 0.86 for bearing angle and r = 0.51 for distance against
ground truth), (D) Closer and bigger objects (red dots) are
segmented better.

visible parts based on the statistical regularity of the envi-
ronment by a third convolutional network. We train all three
networks jointly by minimizing the prediction error and a few
losses that encourage the consistency between quantities in-
ferred from the new image and those predicted based on
the first two images (Fig ??). We evaluate our networks on
a dataset of scenes with moving objects and camera with
complex surface texture against a few state-of-the-arts object-
centric representational learning models: MONet(Burgess et
al., 2019), slot-attention(Locatello et al., 2020) (a scaled-up
version), SLATE(Singh, Deng, & Ahn, 2021), AMD(Liu, Wu,
Yu, & Lin, 2021) and O3V(Henderson & Lampert, 2020). Ta-
ble 1 illustrates that our model outperforms several state-of-
the-arts unsupervised object-centric learning models in object
segmentation based on two common metrics.
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